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In large-scale distributed machine learning (DML), the synchronization efficiency of the distributed algo-
rithm becomes a critical factor that affects the training time of machine learning models as the comput-
ing scale increases. To address this challenge, we propose a novel algorithm called Grouped Sparse
AllReduce based on the 2D-Torus topology (2D-TGSA), which enables constant transmission traffic that
does not change with the number of workers. Our experimental results demonstrate that 2D-TGSA out-
performs several benchmark algorithms in terms of synchronization efficiency. Moreover, we integrate
the general form consistent ADMM with 2D-TGSA to develop a distributed algorithm (2D-TGSA-
ADMM) that exhibits excellent scalability and can effectively handle large-scale distributed optimization
problems. Furthermore, we enhance 2D-TGSA-ADMM by adopting the resilient adaptive penalty param-
eter approach, resulting in a new algorithm called 2D-TGSA-TPADMM. Our experiments on training the
logistic regression model with ‘1-norm on the Tianhe-2 supercomputing platform demonstrate that our
proposed algorithm can significantly reduce the synchronization time and training time compared to
state-of-the-art methods.
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1. Introduction

In recent years, the scale of data collection has reached unprece-
dented levels due to the rapid development of technology. To pro-
cess these vast amounts of data and extract valuable knowledge
from them, machine learning (ML) algorithms play a critical role
[1]. Furthermore, the application of ML in emerging fields such as
medical care [2], scientific simulations [3], and robotics [4,5] will
generate more complex ML models and a wider range of data
examples. These trends require increased computing power and
storage capacity to train ML models effectively. As a result, large-
scale parallel training on high-performance computing (HPC) sys-
tems are becoming more common to reduce the training time for
larger models and datasets [6–8].

In modern ML, distributed optimization plays a crucial role, as it
involves multiple computing nodes processing a vast amount of
data and model parameters. The Alternating Direction Method of
Multipliers (ADMM) [9] is an efficient distributed optimization
method that can solve large-scale optimization problems. It is
widely used in supervised machine learning problems such as
regression and classification [10,11] due to its several distinct
advantages. Firstly, ADMM combines with some high-precision
optimization algorithms can achieve faster convergence speed in
many applications [12]. Additionally, ADMM can decompose the
global problem [13] into sub-problems and obtain the global solu-
tion by solving them in parallel. In a distributed implementation,
sub-problems are deployed on multiple worker nodes, which
greatly improves the efficiency of problem-solving. The communi-
cation structure in distributed machine learning mainly adopts the
master–slave structure, such as the parameter server (PS), and the
point-to-point structure, such as AllReduce. However, synchroniz-
ing model parameters is a communication-intensive process, and
distributed training with a master–slave structure has poor scala-
bility. The master node experiences excessive communication load
and memory usage. On the other hand, distributed training in the
peer-to-peer structure can balance the load of nodes. Here are sev-
eral methods for enhancing the communication efficiency of dis-
tributed ADMM. AllReduce-based sparse communication [14,15]
is a technique that reduces communication overhead. Compression
techniques, such as CQ-GGADMM [16] and DQC-ADMM [17], have
been proposed to reduce communication overhead through quan-
tization and communication-censoring.
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In distributed training, the training time of the distributed clus-
ter system is mainly affected by the synchronization time between
workers and the computation time of the workers. The communi-
cation network topology plays a key role in the convergence theory
of multi-agent optimization methods, and an effective synchro-
nization algorithm can accelerate distributed training. Addition-
ally, many models are trained with sparse datasets, where the
data has many fields, but only some fields are filled with values.
Based on these considerations, this paper explores the design of
synchronization algorithms aimed at improving the efficiency of
communication in distributed training. Firstly, a grouped sparse
AllReduce algorithm based on the 2D-Torus topology (2D-TGSA)
is proposed to improve the synchronization efficiency of dis-
tributed algorithms. Secondly, 2D-TGSA is combined with ADMM
to design a new distributed algorithm, namely 2D-TGSA-ADMM,
which has good scalability. Thirdly, to improve the training speed
of 2D-TGSA-ADMM, we improve the residual balancing method
(RB) and propose a resilient adaptive penalty parameter method.
This method is applied to the 2D-TGSA-ADMM algorithm, resulting
in the proposed 2D-TGSA-TPADMM algorithm. The 2D-TGSA-
TPADMM algorithm reduces computation time without sacrificing
the convergence precision in distributed training. The main contri-
butions of this paper can be summarized as follows:

(1) Firstly, in order to address the communication overhead
problem of transmitting the high-dimensional sparse mod-
els, we propose a grouped sparse AllReduce algorithm,
named 2D-TGSA. We compare 2D-TGSA with a benchmark
synchronization algorithm and find that 2D-TGSA has better
synchronization efficiency.

(2) Secondly, we combine the general form consensus ADMM
with the 2D-TGSA and propose a communication-efficient
distributed algorithm named 2D-TGSA-ADMM for solving
large-scale high-dimensional sparse optimization problems.

(3) Thirdly, we propose the resilient adaptive penalty parameter
method, which can adaptively adjust the penalty parameters
of 2D-TGSA-ADMM based on changes in the dual residuals.
Combining this method with TopK sparse computation, we
can reduce the solving time of sub-problems and accelerate
the convergence of 2D-TGSA-ADMM. We name the
improved algorithm 2D-TGSA-TPADMM.

(4) The two ADMM-based distributed algorithms proposed in
this paper are designed to solve large-scale logistic regres-
sion problems with ‘1-norm. Experimental results show that
the proposed 2D-TGSA-ADMM and 2D-TGSA-TPADMM algo-
rithms outperform state-of-the-art methods in terms of
updating time and synchronization costs.

The rest of this paper is organized as follows. Section 2 provides a
review of related work. Section 3 describes the motivation behind
this research. Section 4 explains the preliminary concepts and prob-
lem formulations. Section 5 presents the algorithm design process
of 2D-TGSA-TPADMM. Section 6 presents the experimental setting
and the evaluation results. Finally, Section 7 concludes the paper.
2. Related Work

2.1. Synchronization Architecture

Distributed training systems have been broadly studied
recently to scale up ML for big data and large models. Data paral-
lelism and model parallelism are two common distributed training
methods. Recently, people have proposed more advanced methods
[18,19] to find parallelization strategies that are much more effi-
cient than simple data parallelism and model parallelism. How-
2

ever, these methods often lower statistical efficiency, resulting in
poorer generalization ability.

The process of distributed training includes the model training
phase and model synchronization phase. In the synchronization
phase, each node uses a synchronization architecture [20] (such
as PS and AllReduce) to aggregate its local model parameters. PS-
based synchronization is a centralized synchronization method.
There are two roles for each server, namely, PS and worker [21].
The workers generate gradients for parameters and push them to
PS. Then the PS aggregates the gradients from workers and waits
for workers to pull them back. The flexible synchronization mode
enables PS to support efficient sparse communications, where each
worker only accesses a small part of the model parameters in one
iteration [22,23]. However, training large models usually suffers
from communication bottleneck in the PS node, and it is difficult
for PS to benefit from efficient AllReduce routines designed for
HPC network hardware. Ring-based AllReduce is a decentralized
algorithm, which has been studied in DML scenarios [24,25]. It
works in a mode of scatter + gather and shows excellent perfor-
mance in many DML training workloads. However, it degenerates
into inefficient AllGather primitives for sparse communication.

2.2. Efficient Sparse Collectives

As the size of the training model increases, model parameter
synchronization becomes the dominant component in distributed
training. AllReduce can significantly stall the calculations of the
following training epoch and is sensitive to stragglers and commu-
nication delays. Therefore, it can quickly become a bottleneck for
large-scale distributed training. To address this problem, there
are two main research directions.

Firstly, several synchronization algorithms have been proposed
for AllReduce operation [26,27]. Baidu Research implemented a
bandwidth-optimal ring AllReduce algorithm [26], which has been
included in the popular deep learning framework [24]. However,
ring AllReduce suffers from long latency and may have low
resource utilization in large-scale clusters. Huang et al. [27] pre-
sented the MultiTree algorithm, which uses a customized network
architecture to minimize network contention and can provide
contention-free communication. It only conducts communication
over not-yet-occupied links, skipping the others to the next step.
Miao et al. [25] proposed a novel variant of AllReduce that provides
high heterogeneous tolerance and performance by decomposing
the synchronous AllReduce primitive into parallel-asynchronous
partial-reduce operations. Although the relaxing idea works well
for transient stragglers, distributed algorithms that use asyn-
chronous communication mechanisms may cause a certain degree
of degradation in the test accuracy of the training model.

The second research direction for addressing the communica-
tion bottleneck in distributed training is sparse communication
based on AllReduce. Shi et al. [28] proposed a mechanism called
global TopK, where instead of using the top K gradients from each
worker, only the top K gradients among all workers are used. Shi
et al. [29] provided convergence results for this method. However,
this technique usually takes into account the fixed sparsity or com-
pression ratio that needs to be configured as a hyperparameter. Li
et al. [30] designed a general communication library, SparCML,
which extends MPI to support additional features such as non-
blocking (asynchronous) operations and low-precision data repre-
sentations. SparCML uses the AllReduce synchronization scheme to
design a fast random top-k algorithm, but this does not mean top-k
selection. Some important gradient elements are omitted from its
communication set, which leads to the convergence problem of
the system. Chen et al. [31] proposed the Scalable Sparsified Gradi-
ent Compression (ScaleCom) method, which tailors AllReduce to
sparse data. The work either determines the compression level in
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advance or adjusts the level according to a heuristic method, which
may lead to contradictory conclusions. Fei et al. proposed OmniR-
educe [32], which partitions data into blocks and only sends non-
zero data blocks, greatly reducing the overhead of transmitting
indices, especially when used with block-based compressionmeth-
ods. However, it forces the application to sparsify the data per-
block, i.e., to send sparse blocks of dense data, which negatively
impacts the convergence of distributed training.

Although the proposed sparse AllReduce reduces communica-
tion overhead through some manual parameter-adjusting mecha-
nisms, it negatively impacts the convergence of distributed
algorithms, especially in large-scale cluster environments. In this
paper, we further reduce the mutual waiting time and communica-
tion overhead among workers in large-scale clusters, mainly by
substantially reducing communication traffic while ensuring the
convergence accuracy of distributed algorithms.
2.3. Communication-efficient Distributed ADMM Algorithm

To enhance the communication efficiency of distributed learn-
ing, previous research has explored various technologies under
centralized and decentralized network architectures. Liu et al.
[17] attempted to combine communication censoring with ADMM
to solve the decentralized dynamic consensus optimization prob-
lem. During the training process, the censoring ADMM algorithm
uses a threshold to limit the transmission of unimportant informa-
tion, which can reduce communication volumes during the opti-
mization process. However, the inexact algorithm lacks a
compensation mechanism resulting in poor convergence. Wang
et al. [15] presented an asynchronous lazy ADMM algorithm based
on hierarchical sparse AllReduce communication mode, tailored for
sparse data to effectively aggregate the filtered transmission
parameters. To improve communication efficiency, the algorithm
adopts stale synchronous parallel (SSP) bridging model and filters
out unnecessary information by manually setting a threshold.
Although the communication efficiency is improved, the precision
of the algorithm is sacrificed, and the threshold value needs to be
selected manually, resulting in poor scalability of the algorithm.
Several works have studied ADMM variants used for federate
learning (FL). Specifically, to reduce communication and calcula-
tion burden, Zhou et al. [33,34] studied an ADMM variant with a
flexible communication mechanism for FL, where clients only com-
municate with the central server at fixed time points instead of at
each iteration. FL usually prioritizes the efficiency of calculation
and communication over the accuracy of solutions. However, FL
assumes that the parameter server collects and distributes model
parameters, which are not always available from faraway workers
and are easily affected by a single point of failure.

In DML training, although certain sparse communication strate-
gies that involve manually setting the threshold can exclude more
unnecessary transmission information, they may lead to lower train-
ing accuracy. Therefore, balancing the communication costs and
accuracy of the training model is therefore a significant challenge.
3. Motivation

3.1. Communication Overhead

In high-dimensional settings, sparsity is a crucial property that
can be leveraged to accelerate training. Sparsity can be divided into
two aspects: data sparsity and model sparsity. In terms of data
sparsity, datasets typically have a large number of features, most
of which have zero values. If the feature representation of the cur-
rent sample is zero, the stochastic gradient with respect to the cor-
responding feature must also be zero [35]. On the other hand,
3

regularization typically enforces model sparsity, where the coeffi-
cients of associated features are zero at the optimum. Model spar-
sity can be used to reduce problem dimensionality by identifying
inactive features beforehand [36]. Discarding these features can
save significant computation without any loss of accuracy. There-
fore, exploiting sparsity to accelerate high-dimensional models
training is a promising and much-needed approach.

In the ADMM-based distributed algorithm, the aggregation of
parameters for each iteration is performed among workers, which
can consume heavy network bandwidth resources. The larger the
model, the faster the bandwidth costs increase. AllReduce is an
efficient and widely-supported collective synchronization opera-
tion that directly aggregates the parameters of workers. However,
the communication primitives ignore that AllReduce is unsuitable
for sparse transmission. In particular, it is easy to generate sparse
models by training sparse datasets or using some regularization
methods. Therefore, it is a waste of bandwidth to transmit many
zeros in distributed training.

3.2. Training Speed Gap among Workers

Nowadays, the SSGD algorithm [37] is commonly used for train-
ing neural networks [38,18,19], as it is easy to implement and
deploy. However, due to communication delays in each synchro-
nization process and themutual waiting betweenworkers with dif-
ferent performances, a large amount of extra overhead is
introduced [29]. Specifically, in each iteration, all workers use dif-
ferent mini-batch data to compute the gradients of the model in
parallel and then average the gradients of each worker to update
the global model later, which introduces a large communication
overhead. In addition, after each iteration, due to the synchroniza-
tion of local model parameters, the workers with strong perfor-
mance have to halt, waiting for the workers with weak
performance, which leads to high waiting costs. Sometimes, when
the distributed SGD algorithm trains a larger model, the waiting
time and synchronization time even exceed the updating time,
which decreases the utilization rate of computing resources and
limits the scalability of the algorithm [39].

The ADMM algorithm can decompose the primal problem into
sub-problems for distributed computing. In ADMM-based dis-
tributed training, sub-problem solving using first-order algorithms
usually suffers from high communication complexity. In contrast,
second-order algorithms can have faster convergence speed, result-
ing in lower communication complexity [40]. The trust region New-
tonmethod (TRON) [41] has a quadratic convergence rate. However,
in the synchronization process, the number of CG-Newton iterations
can cause differences in training speed among different workers,
leading tomutualwaiting betweenworkers.We experimentally ver-
ify this issue by training a logistic regressionmodel using the ADMM
algorithm on 16 workers. Fig. 1 provides an illustrative example.

The difference in workers’ iteration time is mainly reflected in
the sub-problem solving algorithm. In different colors, we show
the time consumption by 16 workers in solving the sub-
problems. As can be seen from Fig. 1(a), the iteration time of the
sub-problem varies significantly as the ADMM algorithm performs
the consistency operation. In the sixth consistency operation of the
ADMM algorithm, the time consumption by each worker in calcu-
lating sub-problems is mapped in Fig. 1(b). It can be seen that the
iteration time of all workers is between 0.43s and 24.03s. Some fast
workers, such as worker5 (orange) and worker8 (green), can be
calculated in about 15s, while some slow workers, such as
worker3 (purple) and worker15 (light green), can be calculated
in about 24s, whichmeans that slowworkers consume 37:5%more
time than fast workers. In a large-scale cluster, fast workers need
to wait, which will waste computing resources and slow down
the convergence speed of distributed algorithms.



Fig. 1. Interval in training time with 16 workers.
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4. Preliminary and Problem Formulation

4.1. Preliminary

Notations. R denotes the set of real numbers. The symbol ‘‘h; i”
means ha; bi ¼ ½a1b1; . . . ; anbn�T , respectively, where a ¼ ½a1; . . . ; an�T
and b ¼ ½b1; . . . ; bn�T 2 R are column vectors. k � k denotes the Eucli-
dean norm of vectors. S is the soft threshold and its definition is
shown in Eq. (1).

Sc=Nqð/Þ ¼
/� c=Nq; / > c=Nq;
0; j/j 6 c=Nq;
/þ c=Nq; / < �c=Nq:

8><
>: ð1Þ
4.2. Problem Formulation

This paper mainly focuses on supervised machine learning
problems, including classification and regression problems. The
problem can be abstracted in the following form.

min
x

lðxÞ þ rðxÞ; ð2Þ

where lðxÞ is the loss function and rðxÞ is the regularization term.
The regularization term typically includes ‘1-norm and ‘2-norm.
‘1-norm can generate a sparse weight matrix, which can be used
for feature selection. ‘2-norm can prevent the model from
overfitting.

General form consensus problem [9]. This paper focuses on
the general form of the problem, in which the local variables
xi 2 Rd; i ¼ 1; � � � ;N have a separable loss function
f 1ðx1Þ þ � � � þ f NðxNÞ with respect to xi. Each of these local variables
consists of a selection of the components of the global variable
z 2 Rd, which we call ~zi. The general form consensus problem with
‘1-norm, where gð~ziÞ ¼ ck~zik1, is as follows:

min
xi

XN
i¼1

f iðxiÞ þ gð~ziÞ;

s:t: xi � ~zi ¼ 0; i ¼ 1; � � � ;N:
ð3Þ

By constructing a Lagrangian function as shown in Eq. (4), the con-
strained problem (3) is transformed into an unconstrained problem.

Lðx; z; kÞ ¼
XN
i¼1

ðf iðxiÞ þ hki; xi � ~zii þ q
2
kxi � ~zik22 þ ck~zik1Þ: ð4Þ

ADMM iterations [9]. The problem (4) is iteratively solved by
the ADMM algorithm.
4

xkþ1
i :¼ argmin

xi
ðliðxiÞþ < kki ; xi > þq

2
kxi � ~zki Þk22Þ; ð5Þ

zkþ1
g :¼ Sc=Nqð

X
Gði;jÞ¼g

ððxkþ1
i Þj þ 1

q ðkki ÞjÞ
X

Gði;jÞ¼g

1
Þ; ð6Þ

kkþ1
i :¼ kki þ qðxkþ1

i � ~zkþ1
i Þ; ð7Þ

where k ¼ ½k1; � � � ; kN� 2 Rd is the dual variable, and q > 0 is a pen-
alty parameter. The z-update step is decoupled across the compo-
nents of z to reduce the communication frequency. To further
reduce communication costs, xi and ki are merged on the distributed
memory, as shown in Eq. (8). Finally, zg is obtained by averaging all
entries of Eq. (8) that correspond to the global index g.

wkþ1
i ¼ xkþ1

i þ 1
q
kki ; ð8Þ

ADMM residuals. Let x� and z� denote the optimal primal vari-
ables, and k� denote the optimal dual variable. The primal residual,
as shown in Eq. (9), is defined as:

rkþ1 ¼ xkþ1 � zkþ1: ð9Þ
Defining

skþ1 ¼ qðzkþ1 � zkÞ; ð10Þ
as the dual residual.

5. Communication Efficient Resilient Adaptive ADMM
Algorithm

5.1. Sparse Synchronization Algorithm

Efficient communication topology is crucial to reducing the com-
munication load of model parameter synchronization. Previous works
propose ring-based topology and 2D-Torus topology to improve the
efficiency of AllReduce operations. However, these synchronization
algorithms have limitations. For instance, when using a synchroniza-
tion algorithm such as Ring AllReduce, the faster worker needs to wait
for the slower worker to finish the computation, which significantly
reduces the efficiency of the distributed algorithm. Ring AllReduce
and 2D-Torus AllReduce are susceptible to ‘‘slow nodes” and have
low transmission utilization efficiency for large-scale clusters with
thousands of CPUs. To address these issues, we propose a grouped
sparse AllReduce algorithm based on 2D-Torus (2D-TGSA).

5.1.1. Grouped 2D-Torus AllReduce
The topology of 2D-TGSA is illustrated in Fig. 2. We use the

updating situation of workers shown in Fig. 1(b) as an example.



Fig. 2. (a) Workers are grouped based on their updating time, and the worker with the smallest rank in the group is selected as the leader. (b) The leader executes an
improved 2D-Torus AllReduce. (c) The leaders broadcast the updated parameters to other workers in the group.
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In this example, there are 16 workers in the cluster, and their train-
ing speeds vary greatly. We dynamically divide the workers into
four groups, each containing four workers, with the worker having
a smaller rank value in each group serving as the leader. The lead-
ers are arranged in a 2D grid. 2D-TGSA consists of three steps. (1)
The workers in the group perform a Ring AllReduce operation. (2)
The leaders perform an improved 2D-Torus AllReduce operation.
(3) The leaders then perform the broadcast operation within their
group. We focus on the second step, as shown in Fig. 2(b).

In the 2D-Torus topology, reduction operation consists of three
phases: ReduceScatter, Segmented Ring AllReduce (SRA), and All-
Gather, where the SRA is our improved method. Based on Ring All-
Reduce, data must be divided into blocks. Suppose there are N
workers in the cluster W0;W1; . . . ;WN�1. These workers are built
on a Cartesian topology, with

ffiffiffiffi
N

p
¼ L workers in the horizontal

and vertical directions. In the first phase, ReduceScatter is per-
formed horizontally. Let Wi denote the i-th worker, Wi has E
Fig. 3. (a) Workers in the group execute the Ring AllReduce operation. (b) The leaders
operation vertically. (d) The leaders execute the AllGather operation horizontally. (e) Th
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parameter elements fe0i ; e1i ; . . . ; eE�1
i g, and the parameter elements

in each worker are divided into L blocks, where

fe0i ; . . . ; e
dELe
i g 2 chk0; . . . ; feðL�1ÞdELe

i ; . . . ; eE�1
i g 2 chkL�1. The ReduceS-

catter operation requires L� 1 iterations, where j is the number
of iterations, 1 6 j 6 L� 1. We use a generic operator � to denote
the reduction operator, where

Wi½chkðiþ ffiffi
L

p
�jÞ%

ffiffi
L

p � ¼ Wi½chkðiþ ffiffi
L

p
�jÞ%

ffiffi
L

p �
�W ðiþ

ffiffi
L

p
�jÞ%

ffiffi
L

p ½chkðiþ ffiffi
L

p
�jÞ%

ffiffi
L

p �: ð11Þ

When the ReduceScatter operation executes for the j-th time, the
chunk chkðiþ ffiffi

L
p

�jÞ%
ffiffi
L

p of neighbouring worker ðiþ ffiffiffi
L

p � jÞ% ffiffiffi
L

p
are

reduced to chkðiþ ffiffi
L

p
�jÞ%

ffiffi
L

p of worker i in the horizontal direction. In
the second phase, the SRA operation is performed in the vertical
direction, targeting a sub-block after the horizontal segmentation.
This operation only needs to be executed on the chkðiþ ffiffi

L
p

�jÞ%
ffiffi
L

p block
execute the ReduceScatter operation horizontally. (c) The leaders execute the SRA
e leader broadcasts the model parameters to the workers in the group.



G. Wang, Y. Lei, Y. Qiu et al. Neurocomputing 550 (2023) 126456
of worker i, dividing the chkðiþ ffiffi
L

p
�jÞ%

ffiffi
L

p data block into
ffiffiffi
L

p
blocks, and

performing a Ring AllReduce operation. Unlike the original 2D-
Torus AllReduce, the newly proposed SRA only employs reduction
operations by sub-blocks, significantly reducing the time spent on
the reduction operation. In the third phase, all workers perform
the AllGather operation in the horizontal direction.

We provide an example to illustrate the 2D-TGSA algorithm, as
depicted in Fig. 3. In this instance, there are 16 workers, where
N ¼ 16, and each worker contains a vector with a model parameter
size of 16, with E ¼ 16. We divide these 16 workers into four
groups, each consisting of four workers, as shown in Fig. 3(a),
and select the minimum rank of each group as the leader. There
are four leaders in total. These four leaders are arranged in a Carte-
sian topology, with four workers in the horizontal and vertical
directions. Firstly, the ReduceScatter operation is executed hori-
zontally, as shown in Fig. 3(b). Then, the SRA operation is executed
vertically, as shown in Fig. 3(c). Later, the AllGather operation is
executed horizontally, as shown in Fig. 3(d). Finally, as shown in
Fig. 3(e), the leader broadcasts the updated model parameters to
the workers in the group.

5.1.2. Data Representation and Messages Aggregation
Many models used in various applications operate on data with

a large number of input fields, potentially numbering in the hun-
dreds of thousands. However, only a few hundred of these features
contain data, which are referred to as sparse data. Compared to
dense data, sparse data typically has a much smaller number of
non-zero entries. In DML, the sparsity of model parameters is
mainly related to the datasets and objective function. Models that
use sparse data present unique challenges, especially when high-
dimensional models need to be transferred between workers. In
networks with limited communication capabilities, the communi-
cation overhead can significantly affect the performance of DML
tasks.

We encode sparse model parameters using < key, value > pairs.
Suppose there are Nworkers in the cluster, andWi represents the i-
th worker. Each worker has d model parameters that require the
AllReduce operation. Let Ei represent the set of non-zero elements
on worker Wi. If the number of non-zero elements is much smaller
than the dimension of model parameters (e.g., Ei � d), we can use
the sparse transmission method.

For a dense set of model parameters, each element’s position in
the vector corresponds to the element’s index, so it is necessary to
store the value of each element. Assuming a d-dimensional vector
where each element requires vsize bytes to store a value, storing
the vector requires vsize � d memory space. Sparse vectors can
be stored using < key, value > pairs. For each non-zero element,
you need to store key and value. Assuming it takes isize bytes to
store a key, for a d-dimensional vector with sparsity r, it only
requires ðvsizeþ isizeÞ � d � r memory space.

5.1.3. 2D-TGSA Synchronization Algorithm
We divide the workers into groups based on the number of

workers, aiming to have the number of leaders equal to the square
root of the number of workers. Once the group size is determined,
we can perform sparse Ring AllReduce operations within the
group. After all the groups have completed the reduction, the
worker with the smallest rank value in the group is selected as
the leader. The leader constructs a Cartesian topology and per-
forms sparse ReduceScatter operations in the horizontal direction,
sparse SRA operations in the vertical direction, and finally, per-
forms sparse AllGather operations in the horizontal direction. The
specific algorithm flow is depicted in Algorithm1.
6

Algorithm1: 2D-TGSA on worker i
5.1.4. Evaluation
AllReduce is a synchronization operation used in DML that

reduces target arrays in all workers to a single array and returns
the resulting array to all workers. Synchronization among workers
is one of the many challenges when training distributed machine
learning models, and several typical algorithms, such as single ring
and single tree, have been implemented to address this issue. We
model several popular synchronization algorithms and analyze
their efficiency. Table 2 shows the overall time consumption of
various synchronization algorithms, where the bold formula repre-
sents the communication time consumption, and the non-bold for-
mula represents the reduction time consumption. The symbols and
parameter values used in our analysis are shown in Table 1.

The 2D-TGSA algorithm is based on the ReduceScatter and All-
Gather operations. Firstly, the data of each worker is divided into N
blocks. The ReduceScatter operation is completed through N � 1
steps, allowing each worker to obtain 1

N of the complete data block.
The communication time consumption for each step is aþ Sd

bN, and

the reduction time is SdC
N . In the AllGather operation, every 1

N data
block of all workers is completed in N � 1 steps, with the commu-
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nication time consumption per step also being aþ Sd
bN. The overall

synchronization time consumption is approximately
2ðN � 1Þðaþ Sd

bNÞ þ ðN � 1Þ SdC
N . The ReduceScatter and AllGather

operations are advantageous because they ensure that the commu-
nication volume does not change with the increase in the number
of nodes, resulting in a synchronization time that does not change
sharply, as shown in Fig. 4. In addition, the 2D-TGSA algorithm has
obvious advantages over the other two non-sparse algorithms
because it only transfers non-zero parameters, making it particu-
larly suitable for sparse training tasks.

5.2. Algorithm Development

In Section 5.1.3, we introduce the 2D-TGSA algorithm, which is
designed to synchronize distributed training. We combine this
algorithm with the general consensus ADMM algorithm to design
a distributed algorithm, as shown in Algorithm2. This algorithm
is suitable for training sparse models on high-dimensional sparse
datasets. It makes full use of distributed bandwidth and improves
communication transmission efficiency.

Algorithm2: 2D-TGSA-ADMM on worker i
Table 1
Notations.

Symbol Description Value

N The total number of workers 128�640
L The number of groups 4
a Delay between two communication workers 0.7ls
S The total size of parameters on each worker 3231961
d Value data type (DOUBLE) 8B
i Key data type (INT) 4B
b The bandwidth capacity of cluster 7GB=s
C Computation time per byte of data 1:6ns
r Model parameter sparse rate 84%

Table 2
Global synchronization time of various algorithms.

Synchronization algorithm

WRHT [42]

Moshpit AllReduce [43] log2 N
L ðaþ

HSA [15] 2ðaþ SðdþiÞr
b Þ þ 2ðL� 1

2D-TGSA 2ðNL � 1Þðaþ SðdþiÞrL
bN Þ þ ðaþ SðdþiÞr

b Þ þ 2ð
ffiffiffi
L

p
� 1Þða

7

5.2.1. Resilient Adaptive Penalty Parameter Method
The ADMM can decompose the original problem into sub-

problems and solve them using high-precision algorithms. The
TRON method [41] is a high-order algorithm that can achieve a
quadratic convergence rate, but the updating time of the sub-
problem is a relatively large part of the single iteration of the dis-
tributed ADMM algorithm. In Section 3, we analyze the computa-
tion speeds of sub-problems in distributed computing and find
that they can lead to mutual waiting problems between workers
in the synchronization process. To address this issue, we study
adaptive ADMM in the distributed setting, where different workers
use different local penalty parameters to accelerate convergence.
He et al. [44] proposed an improved convergence rate for the
ADMM algorithm by using an adaptive penalty term, which
reduces the influence of the initial penalty value on the conver-
gence performance. The idea is to consider the relative size of
the primal residual and the dual residual of the ADMM algorithm,
as shown in Eq. (12).

qkþ1 ¼
qk � ð1þ sÞ; if krkk2 > fkskk2;
qk � ð1þ sÞ�1

; if kskk2 > fkrkk2;
qk; otherwise;

8><
>: ð12Þ

where k is the iteration index, f > 0; s > 0 are parameters, rk and sk

are the primal and dual residuals, respectively. The typical choice of
parameters is f ¼ 10 and s ¼ 1 for all iterations K. However, this
method has no constraints on the penalty parameter q and is not
a general approach. As q increases, the algorithm may fail to con-
verge. To address this issue, we propose a resilient adaptive penalty
parameter method that improves the training speed of the algo-
rithm while preventing the penalty parameter from deviating too
far from its initial value, which can cause the ADMM algorithm to
fail to converge. A simple scheme for achieving this goal is to update
the penalty parameter as follows:

qkþ1 ¼
qk � ð1þ sÞ; if krkk2 > fkskk2;
qk � ð1þ sÞ�1

; if kskk2 > fkrkk2;
q0; otherwise:

8><
>: ð13Þ

The parameters of the method follow the original paper [44].

5.2.2. Accelerated Residual Drop by TopK Sparsity
The idea of residual balancing (RB) [44] comes from increasing

qk to strengthen the penalty term, yielding smaller primal residu-
als but larger dual ones. On the contrary, decreasing qk leads to lar-
ger primal and smaller dual residuals. As both residuals must be
negligible at convergence, it makes sense to ‘‘balance” them [45].
The primal residual is the same as the dual ascent method’s gradi-
ent. To be able to make the primal residuals fall fast, we use the
TopK algorithm to select the gradient information, which is essen-
tial for the dual variables, as shown in Eq. (14),

CjðG½j�Þ ¼
G½j�; if j 2 IjðGÞ;
0; otherwise;

�
ð14Þ
Overall time

2logN
L
Nðaþ Sd

b þ SdCÞ

Sd
b þ SdCÞ þ log2Lðaþ Sd

b þ SdCÞ

Þðaþ SðdþiÞr
bL Þ þ N

L Sðdþ iÞrC þ ðL� 1Þ SðdþiÞrCL

þ SðdþiÞr
b
ffiffi
L

p Þ þ 2ð
ffiffiffi
L

p
� 1Þðaþ SðdþiÞr

bL Þ þ ð
ffiffiffi
L

p
� 1Þ SðdþiÞrCffiffi

L
p þ ð

ffiffiffi
L

p
� 1Þ SðdþiÞrCL



Fig. 4. Synchronization time of various algorithms as the number of workers
increases.

G. Wang, Y. Lei, Y. Qiu et al. Neurocomputing 550 (2023) 126456
where Cjð�Þ is a compression operator, IjðGÞ is the index set for the
K components of G with largest magnitude [46]. In this case, we
only calculate the gradient magnitude and the sparsity pattern of
the gradient. Since it is impossible to calculate the K value precisely
and is not the focus of this paper, three percentages j of TopK are
used in this paper, 1%;20%, and 50%, corresponding to the first K
large elements of the sparse dual gradient elements. The resilient
adaptive penalty parameter method speeds up the convergence of
the ADMM algorithm, and the TopK sparsity in turn reduces the
computational complexity from Oðd � rÞ to Oðd � r � jÞ.

5.3. Distributed Algorithm 2D-TGSA-TPADMM

To decrease the training time of the 2D-TGSA-ADMM algorithm,
we propose a new algorithm called 2D-TGSA-TPADMM, which
combines the resilient adaptive penalty parameter method with
the TopK sparse computation method. The algorithm is shown in
Algorithm3.

Algorithm3: 2D-TGSA-TPADMM on worker i
8

5.3.1. Convergence Analysis
In this subsection, we provide convergence analysis for the pro-

posed distributed algorithm 2D-TGSA-TPADMM.
Symbol description. For any vectors ðx1; . . . ; xN; z; kÞ 2 Rd, we let

ðx1; . . . ; xN; z; kÞ be ðx; z; kÞ and f ðxÞ ¼ PN
i¼1f ðxiÞ.

Assumption 1. Functions f i and g are convex functions with
variable derivatives.
Assumption 2. The unaugmented Lagrangian L0 has a saddle
point. Explicitly, there exist ðx�; z�; y�Þ, not necessarily unique, for
which

L0ðx�; z�; kÞ 6 L0ðx�; z�; k�Þ 6 L0ðx; z; k�Þ; ð15Þ
holds for all ðx; z; kÞ.
Theorem 1. Under Assumptions 1 and 2, the ADMM iterates sat-
isfy rk ! 0; zkþ1 � zk ! 0 as k ! þ1, then

lim
k!þ1

pk ¼ p�:
Proof. As ðx�; z�; k�Þ is the saddle point of the function L0, there is
L0ðx�; z�; k�Þ 6 L0ðxkþ1; zkþ1; k�Þ. Using x� � z� ¼ 0 and setting
pkþ1 ¼ f ðxkþ1Þ þ gðzkþ1Þ; p� ¼ f ðx�Þ þ gðz�Þ, we have

p� 6 pkþ1 þ ðk�ÞT rkþ1: ð16Þ
By definition, we know that xkþ1 is the minimum value of
Lqðx; zk; kkÞ. Since f is a differentiable convex function, there is

0 2 @Lqðxkþ1; zk; kkÞ ¼ @f ðxkþ1Þ þ kk þ qðxkþ1 � zkÞ. Recall that

kkþ1 ¼ kk þ qrkþ1, and hence
0 2 @Lqðxkþ1; zk; kkÞ ¼ @f ðxkþ1Þ þ kkþ1 þ qðzkþ1 � zkÞ. This shows that
xkþ1 is the minimum value of the function

f ðxÞ þ ðkkþ1 þ qðzkþ1 � zkÞÞTx: ð17Þ
Similarly, we can get that zkþ1 is the minimum of function

gðzÞ � ðkkþ1ÞTz. Combining the function with (17), we can get

f ðxkþ1Þ þ ðkkþ1 þ qðzkþ1 � zkÞÞTxkþ1

6 f ðx�Þ þ ðkkþ1 þ qðzkþ1 � zkÞÞTx�;
ð18Þ

gðzkþ1Þ � ðkkþ1ÞTzkþ1 6 gðz�Þ � ðkkþ1ÞTz�: ð19Þ
Using x� � z� ¼ 0 and combining (18) and (19), we have

pkþ1 � p�

6 �ðkkþ1ÞT rkþ1 � qðzkþ1 � zkÞTðrkþ1 þ zkþ1 � z�Þ:
ð20Þ

Combining (16) and (20), we get

2ðkkþ1 � k�ÞT rkþ1 þ2qðzkþ1 � zkÞTrkþ1 þ2qðzkþ1 � zkÞTðzkþ1 � z�Þ6 0:

ð21Þ
Using kkþ1 ¼ kk þ qrkþ1, the first term of (21) can be re-written as

2ðkkþ1 � k�ÞT rkþ1 ¼ 2ðkk � k�ÞT rkþ1 þ qkrkþ1k22 þ qkrkþ1k22
¼ ð2=qÞðkk � k�ÞTðkkþ1 � kkÞ
þ ð1=qÞkkkþ1 � kkk22 þ qkrkþ1k22

¼ ð1=qÞðkkkþ1 � k�k22 � kkk � k�k22Þ þ qkrkþ1k22:
ð22Þ



Fig. 5. Time breakdown of one iteration of the distributed algorithm. The y-axis
represents different workers, and the x-axis denotes the time of each part.
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Re-arranging (22) and the remaining items of the left hand-side of
(21)

qkrkþ1k22 þ 2qðzkþ1 � zkÞT rkþ1 þ 2qðzkþ1 � zkÞTðzkþ1 � z�Þ
¼ qkrkþ1 þ ðzkþ1 � zkÞk22 � qkzkþ1 � zkk22 þ 2qðzkþ1 � zkÞT ðzkþ1 � z�Þ
¼ qkrkþ1 þ ðzkþ1 � zkÞk22 � qðkðzkþ1 � zkÞ � ðzkþ1 � z�Þk22 � kzkþ1 � z�k22Þ
¼ qkrkþ1 þ ðzkþ1 � zkÞk22 þ qðkzkþ1 � z�k22 � kzk � z�k22Þ:

ð23Þ

Using Uk ¼ ð1=qÞkkk � k�k22 þ qkzk � z�k22, (21) can be written as

Uk � Ukþ1 P qkrkþ1 þ ðzkþ1 � zkÞk22: ð24Þ

Since zkþ1 is the minimum value of function gðzÞ � ðkkþ1ÞTz and zk is

the minimum value of function gðzÞ � ðkkÞTz, we can get

gðzkþ1Þ � ðykþ1ÞTzkþ1 6 gðzkÞ � ðykþ1ÞTzk; ð25Þ

gðzkÞ � ðykÞTzk 6 gðzkþ1Þ � ðykÞTzkþ1: ð26Þ
Combining the above two inequalities, there is

ðkkþ1 � kkÞTðzkþ1 � zkÞ P 0: ð27Þ
Since kkþ1 � kk ¼ qrkþ1, then we can write

qðrkþ1ÞTðzkþ1 � zkÞ P 0: ð28Þ
Combining (28) and (24), we get

Uk � Ukþ1 P qkrkþ1k22 þ qkzkþ1 � zkk22: ð29Þ
So there is

Xþ1

k¼0

ðqkrkþ1k22 þ qkzkþ1 � zkk22Þ 6 U0: ð30Þ

From (30), we conclude that the ADMM iterates satisfy
rk ! 0; zkþ1 � zk ! 0 as k ! þ1, then

lim
k!þ1

pk ¼ p�:
1 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html/##kdd2010
raw version (bridge to algebra)

2 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html##url
6. Experiments

In this section, we evaluate the performance and scalability of
the sparse synchronization algorithm 2D-TGSA and the proposed
distributed algorithm 2D-TGSA-TPADMM.

Problem formulation. We use the general consensus ADMM
algorithm to solve large-scale logistic regression problem with
‘1-norm, as shown in Eq. (31).

min
x

f ðxÞ 	
Xn
i¼1

logð1þ e�bixTDi Þ þ 1
2
kxk1; ð31Þ

where x 2 Rd is model parameters, n is the number of samples,
Di 2 Rd is the i-th sample, bi 2 f�1;1g represents the label of the
i-th sample.

6.1. Synchronization Test of Model Parameters

Fig. 5 shows a flow chart of the distributed ADMM algorithm
used for training ML models. The algorithm for synchronizing
model parameters involves each worker reducing a sub-model to
a global model, as depicted in the orange section of Fig. 5. An effec-
tive synchronization algorithm can enhance the scalability of the
distributed algorithm. To evaluate the performance of 2D-TGSA,
we conduct experiments to compare it with three existing syn-
chronization algorithms.
9

6.1.1. Experimental setting
Evaluation mechanism. One iteration of the ADMM algorithm

includes the update times for primal variable xupdate, consistency
variable zupdate, dual variable kupdate and sub-model synchronization
Tsync , as illustrated in Fig. 5. The sub-model synchronization time is
used to evaluate the performance of the synchronization
algorithm.

Datasets. In order to evaluate the efficiency of the proposed
sparse synchronization algorithm, we test two high-dimensional
sparse datasets, namely kddbr1 and url2, as shown in Table 3. kd-
dbr is a dataset provided by the 2010 KDD Cup competition, while
url is a binary dataset used to classify normal and malicious web
pages. The provided datasets are in the LIBSVM format.

Experimental platform configuration information. The con-
figuration information of our experimental platform is shown in
Table 4, and the configuration information of the cluster is shown
in Table 5.

Baseline. We compare 2D-TGSA to the following state-of-the-
art algorithms:

(1) WRHT [42].
(2) Moshpit AllReduce [43].
(3) HSA [15].

6.1.2. Performance and Scalability
To compare the synchronization efficiency of the algorithms, we

conduct experiments with different scenarios using 16 and 64
workers, respectively. Table 6 presents all the experimental results.
In most cases, the 2D-TGSA algorithm exhibits better synchroniza-
tion efficiency than all other algorithms tested on benchmark data-
sets under different schemes.

Synchronization time. We employ an ADMM-based dis-
tributed algorithm to train the logistic regression model on sparse
datasets andmeasure synchronization time as a test metric. Table 6
summarizes the synchronization time for each round of communi-
cation. We provide a more detailed analysis of the relative perfor-
mance of different message sizes and model sparse rates. Firstly,
we conduct experiments on the kddbr dataset, and the results
are shown in Fig. 6. Our findings indicate that the 2D-TGSA algo-
rithm consistently outperforms WRHT, Moshpit AllReduce, and
HSA algorithms by 2.4
, 5.1
, and 1.3
, respectively, when the



Table 3
A summary of datasets.

Dataset #Training instances #Testing instances #Features

kddbr 19,264,097 748,401 1,163,024
url 2,156,517 239,613 3,231,961

Table 4
Platform configuration information.

Platform
configuration

Parameter value

#CPU 1 
 Intel(R) Core(TM) i7-10700 CPU @
2.90 GHz

#Cores per CPU 8
RAM per computer 16 GB
Operating system Ubuntu 20.04

Table 5
Cluster configuration information.

Cluster configuration Parameter value

#Nodes in the cluster 10
#Cores in the cluster 80

MPI version MPICH-3.3a2
Compiler gcc-7.5.0
Network Giga Bit Ethernet

Table 6
The synchronization time of various algorithms.

Dataset #Workers Model parameter sparse rate

kddbr 16 85.68%

64 92.84%

url 16 86.26%

64 94.72%

Fig. 6. The synchronization time of four various synchronization
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model parameter sparse rate is 85.68%. As the computational scale
increases, the model parameter sparsity increases to 92.84%, and
the synchronization efficiency increases by 2.3
, 6.4
, and 1.5
,
respectively. In addition, we conduct experiments on the url data-
set, and the results are shown in Fig. 7. Our observations indicate
that the 2D-TGSA algorithm consistently outperforms WRHT,
Moshpit AllReduce, and HSA algorithms by 2.1
, 5
, and 1.1
,
respectively, when the model parameter sparse rate is 86.26%.
As the computational scale increases, the model parameter spar-
sity increases to 94.72%, and the synchronization efficiency
increases by 2.6
, 7.5
, and 1.6
, respectively.

The experimental results are consistent with the theoretical
analysis presented in Section 5.1.4, which demonstrates the effec-
tiveness of our sparse synchronization algorithm in a small-scale
distributed cluster. These findings also indicate that the 2D-TGSA
algorithm is highly effective in improving performance when deal-
ing with high-dimensional sparse datasets. On the other hand,
communication sparseness is necessary, particularly in heteroge-
neous environments and with limited bandwidth at the edges.
Synchronization algorithm Synchronization time per round (s)

WRHT 0.50�0.57
Moshpit AllReduce 1.01�1.27
HSA 0.26�0.32
2D-TGSA 0.20�0.25
WRHT 0.78�0.81
Moshpit AllReduce 2.06�2.32
HSA 0.49�0.53
2D-TGSA 0.32�0.36
WRHT 1.42�1.46
Moshpit AllReduce 3.10�3.61
HSA 0.71�0.76
2D-TGSA 0.65�0.69
WRHT 2.19�2.22
Moshpit AllReduce 6.21�6.72
HSA 1.30�1.43
2D-TGSA 0.75�0.98

algorithms using the kddbr dataset with 16 and 64 workers.



Fig. 7. The synchronization time of four various synchronization algorithms using the url dataset with 16 and 64 workers.

Table 7
A summary of high-dimensional datasets.

Dataset #Training instances #Testing instances #Features

avazu 12,642,186 1,719,304 1,000,000
webspam 280,000 70,000 16,609,143
kdd2012 119,705,032 29,934,073 54,686,452

Table 8
Tianhe-2 platform configuration information.

Platform configuration Parameter value

#CPUs per computer 2 
 Intel Xeon E5
#Cores per CPU 12

RAM per computer 64 GB
Operating system Red Hat Enterprise Linux Server release 6.5

Table 9
Tianhe-2 MPI cluster configuration information.

Cluster configuration Parameter value

#Nodes in the cluster 64
#Cores in the cluster 1536

MPI version MPICH-3.1
Compiler GNU-4.8.4
Network TH2 Express-2 + 14 Gbps 
 8lane
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6.2. Accuracy and Efficiency of 2D-TGSA-TPADMM

6.2.1. Experiment Setup
Datasets. Three high-dimensional sparse datasets, avazu3 web-

spam4 and kdd20125, are chosen for the experiments. The avazu

dataset is used for predicting click-through rates, while the webspam

dataset is intended for research on web spam detection. The
kdd2012 dataset is provided by the 2012 KDD Cup competition
and is used for predicting the click-through rate of ads based on
query and user information. All three datasets are binary and are
in the LIBSVM format. Detailed descriptions of the datasets are pro-
vided in Table 7.

Experimental platform configuration information. The con-
figuration information of our experimental platform is shown in
3 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html/##avazu
4 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html/

##webspam
5 https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html/##kdd2012
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Table 8, and the cluster configuration information is shown in
Table 9.

Hyper-parameters. For all experiments, the ‘1-norm and the
initial penalty parameter are set to 0.5 and 1, respectively. The
maximum number of iterations and conjugate gradient parameter
of the TRON are 1000 and 0.1, respectively.

Implementation. All methods are implemented in c++, and the
communication library uses MPICH. All the steps of the imple-
mented method run on the CPU except loading the training data
from the disk and communicating the model parameters through
the network.
6.2.2. Effect of j
We investigate the effect of the choice of K on the performance

of the 2D-TGSA-TPADMM. The sparse TopK method for dual vari-
ables does not require an exact value of K. Instead, we choose
the proportion j of the maximum gradient elements of the dual
variable k as the K value for the sparse TopK computation. The pro-
portions are set to 1%;20% and 50%, and we test the optimal j on
the Tianhe-2 supercomputing platform using the sparse webspam

dataset.
In order to test the scalability of the algorithm, we use three

testing schemes with 2, 4, and 18 nodes consisting of 16, 64, and
256 workers, respectively, as shown in Fig. 8. The experimental
results reveal that the use of TopK sparse computation could speed
up the training speed of the 2D-TGSA-AMMM and improve the
model’s testing accuracy. With an increase in the number of work-
ers, the parameters of the model become sparser, resulting in bet-
ter performance of 2D-TGSA-TPADMM. Regarding the choice of
sparse proportion, we find that selecting 20% as the dual gradient
TopK sparse proportion works better than the other tested propor-
tions, as shown in Fig. 8. Therefore, in the following experiments,
our sparse TopK proportion j is set to 20%.
6.2.3. Experimental Results
Baseline. We compare 2D-TGSA-TPADMM to the following

state-of-the-art distributed algorithms:



Fig. 8. Comparison of convergence performance of 2D-TGSA-ADMM and 2D-TGSA-TPADMM with different sparse TopK proportions of 1%;20%, and 50%.
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(1) LBFGS-ADMM [40]. Communication Efficient quasi-Newton
Method based on the Alternating Direction Method of
Multipliers.

(2) HSAC-ALADMM [15]. Global Consistent ADMM Based on
Hierarchical Sparse AllReduce.

(3) 2D-TGSA-ADMM (proposed).

Comparison to baselines. We conduct experiments under dif-
ferent scenarios, using 16, 64, and 256 workers, respectively, to
compare the performance of the methods. Due to differences in
dataset sizes and model dimensions, we use 2, 4, and 16 compute
nodes to test the avazu dataset, 2, 4, and 18 compute nodes to test
the webspam dataset, and 3, 10, and 32 compute nodes to test the
kdd2012 dataset. For all experimental results shown in Table 10,
2D-TGSA-TPADMM outperforms all other scenarios in the three
datasets.

Synchronization time. We evaluate the effectiveness of our
proposed algorithm in an HPC environment by calculating the syn-
chronization time of various ADMM-based distributed algorithms.
Table 10 summarizes the synchronization time of each communi-
cation round.

In the avazu dataset, as the number of workers increases from
16 to 64 and 256, the sparsity of model parameters increases from
86:32% to 96:58% and 99:15%, respectively. Compared to the
LBFGS-ADMM algorithm that uses the AllReduce synchronization
algorithm, the 2D-TGSA-ADMM and 2D-TGSA-TPADMM algo-
rithms based on 2D-TGSA show a 3:7
;4:4
, and 2
 improvement
in the synchronization efficiency, respectively. Compared to the
HSAC-ALADMM algorithm, which utilizes a hierarchical sparse All-
Reduce synchronization algorithm, the synchronization efficiency
is improved by 2:5
;3
, and 1:5
, respectively. In the webspam

dataset, the sparsity of model parameters increases from 97:68%
to 98:47% and 99:11%, respectively, as the number of workers
increases from 16 to 64 and 256. The 2D-TGSA-ADMM and 2D-
TGSA-TPADMM algorithms improve the synchronization efficiency
by 3:1
;3:2
, and 3:5
, respectively, compared with the LBFGS-
ADMM algorithm. Compared to HSAC-ALADMM algorithm, the
synchronization efficiency is improved by 2:1
;2:3
, and 2:6
,
respectively. In kdd2012, the feature dimension is larger than
the other two datasets, and the trained model is denser than that
of the webspam dataset. Compared to the LBFGS-ADMM algorithm,
the synchronization efficiency is improved by 1:5
;2:2
, and 3:8

respectively.

Overall, the results indicate that the 2D-TGSA-based dis-
tributed algorithms significantly improve the synchronization
efficiency compared to the LBFGS-ADMM algorithm using the
AllReduce synchronization algorithm. Furthermore, the proposed
ADMM-based distributed algorithms outperform the HSAC-
ALADMM algorithm, which utilizes a hierarchical sparse AllRe-
12
duce synchronization algorithm. The experiments also suggest
that the synchronization efficiency of the 2D-TGSA algorithm
improves as the sparsity of the model parameters increases.
The superior performance also demonstrates the effectiveness
of our proposed grouped sparse AllReduce algorithm based on
2D-Torus topology.

Updating time. The second-order algorithm is widely used to
solve sub-problems in distributed ADMM algorithms due to its fast
convergence rate. However, its high computational complexity
often leads to inconsistent computing speed of nodes, and synchro-
nization of model parameters requires workers to wait for each
other, which decreases the efficiency of distributed algorithms.
To reduce the computational complexity, we propose a sparse
computation method that uses the average updating time of all
workers as the evaluation metric. In our experiments on the
avazu, webspam, and kdd2012 datasets, we compare the perfor-
mance of our proposed 2D-TGSA-ADMM and 2D-TGSA-TPADMM
algorithms with two baseline algorithms, LBFGS-ADMM and
HSAC-ALADMM. Our experimental results show that the 2D-
TGSA-ADMM and 2D-TGSA-TPADMM algorithms not only take less
updating time but also have a higher test accuracy than LBFGS-
ADMM on all the three datasets. In addition, the computational
efficiency of the proposed algorithms is significantly improved
compared to HSAC-ALADMM.

As shown in Fig. 12(a) compared to HSAC-ALADMM, the 2D-
TGSA-ADMM and 2D-TGSA-TPADMM algorithms achieve higher
computational efficiency at 16 workers (" 13:13%; " 30:05%), 64
workers (" 13:12%; " 39:6%), and 256 workers
(" 12:79%; " 14:01%) in the avazu dataset. Similarly, as shown in
Fig. 12(b), the computational efficiency of these algorithms is
improved at 16 workers (" 11:77%; " 19:06%), 64 workers
(" 5:82%; " 17:88%), and 256 workers (" 4:02%; " 18:69%) in the
webspam dataset. Finally, in the kdd2012 dataset, as shown in
Fig. 12(c), the computational efficiency is improved at 16 workers
(" 41:41%; " 45:46%), 64 workers (" 19:53%; " 29:3%), and 256
workers (" 19:23%; " 19:61%) compared to HSAC-ALADMM. These
results demonstrate that the proposed algorithms are more effi-
cient than HSAC-ALADMM for solving the logistic regression prob-
lem with ‘1-norm regularization on different datasets.
Furthermore, as the size of the model increases, the computational
efficiency of the proposed algorithm gradually improves, indicating
the effectiveness of the proposed sparse computation method in
reducing computational complexity.

Overall, we find that the 2D-TGSA-TPADMM algorithm strikes
the best balance between performance and convergence speed.
The superior performance and convergence speed of 2D-TGSA-
TPADMM also demonstrate the effectiveness of our proposed resi-
lient adaptive penalty parameter method and TopK sparse compu-
tation scheme.



Table 10
Comparison of updating and synchronization times for various ADMM-based distributed algorithms across different sparse rates of model parameters tested on Tianhe-2.

Dataset #Workers Model parameter sparse rate Distributed algorithm Updating time (s) Synchronization time per round (s)

avazu 16 86.32% LBFGS-ADMM 1322.42 0.02�0.04
HSAC-ALADMM 859.04 0.01�0.03
2D-TGSA-ADMM 746.25 0.007�0.01
2D-TGSA-TPADMM 600.86 0.007�0.01

64 96.58% LBFGS-ADMM 567.34 0.03�0.05
HSAC-ALADMM 324.92 0.02�0.04
2D-TGSA-ADMM 282.26 0.009�0.01
2D-TGSA-TPADMM 196.24 0.009�0.01

256 99.15% LBFGS-ADMM 331.88 0.03�0.05
HSAC-ALADMM 184.65 0.02�0.04
2D-TGSA-ADMM 161.02 0.01�0.03
2D-TGSA-TPADMM 158.77 0.01�0.03

webspam 16 97.68% LBFGS-ADMM 5943.54 0.46�0.48
HSAC-ALADMM 2537.95 0.31�0.34
2D-TGSA-ADMM 2239.12 0.15�0.16
2D-TGSA-TPADMM 2054.14 0.15�0.16

64 98.47% LBFGS-ADMM 4878.32 0.61�0.63
HSAC-ALADMM 1732.04 0.43�0.45
2D-TGSA-ADMM 1631.11 0.19�0.20
2D-TGSA-TPADMM 1422.3 0.19�0.20

256 99.11% LBFGS-ADMM 4318.58 0.62�0.64
HSAC-ALADMM 1133.08 0.46�0.48
2D-TGSA-ADMM 1087.44 0.17�0.19
2D-TGSA-TPADMM 921.29 0.17�0.19

kdd2012 16 89.81% LBFGS-ADMM 15640.05 1.53�1.55
HSAC-ALADMM 21384.6 1.14�1.16
2D-TGSA-ADMM 12528.78 1.03�1.05
2D-TGSA-TPADMM 11662.2 1.03�1.05

64 96.46% LBFGS-ADMM 7453 1.68�1.70
HSAC-ALADMM 9595.37 0.76�0.79
2D-TGSA-ADMM 7720.75 0.75�0.77
2D-TGSA-TPADMM 6784.07 0.75�0.77

256 98.78% LBFGS-ADMM 9325.24 2.82�2.87
HSAC-ALADMM 6342.06 0.75�0.78
2D-TGSA-ADMM 5122.06 0.73�0.75
2D-TGSA-TPADMM 5098.09 0.73�0.75

Fig. 9. Comparison of convergence performance of various ADMM-based distributed algorithms on the avazu dataset.
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Convergence performance and test accuracy. To verify the
superiority of the 2D-TGSA-TPADMM algorithm, we compare its
convergence performance with that of the LBFGS-ADMM and
HSAC-ALADMM algorithms in this paper. We run each algorithm
200 times and obtain the iterative curves in Fig. 9–11 by averaging.
From the three figures, we can see that all the four algorithms can
converge to the objective value. The 2D-TGSA-TPADMM algorithm
converges the quickest, followed by the 2D-TGSA-ADMM, HSAC-
ALADMM and LBFGS-ADMM algorithms.

Specifically, the test accuracy of 2D-TGSA-ADMM and 2D-TGSA-
TPADMM is higher than that of the baselines, as shown in Fig. 12.
The main reason is that the algorithm proposed in this paper uses a
general form consensus ADMM algorithm. The local variable no
longer corresponds to the global variable z but to a part of the glo-
bal variable zg . By training logistic regression models with ‘1-norm
13
on the three datasets, we find that the 2D-TGSA-TPADMM algo-
rithm works better for high-dimensional sparse models, which
shows that our sparse algorithm is a good solution for high-
dimensional sparse datasets.
7. Conclusions and Future Work

In order to enable large-scale machine learning, we develop,
analyze, and evaluate an ADMM algorithm framework with high
communication efficiency in a distributed environment.

Our proposed distributed algorithm, 2D-TGSA-TPADMM, uses a
duality approach to derive sub-problems for each machine to solve
in parallel. These sub-problems closely match the global problems,
which makes it easy to reuse the most advanced single-machine



Fig. 10. Comparison of convergence performance of various ADMM-based distributed algorithms on the webspam dataset.

Fig. 11. Comparison of convergence performance of various ADMM-based distributed algorithms on the kdd2012 dataset.

Fig. 12. Scalability comparison of various ADMM-based distributed algorithms in avazu, webspam and kdd2012 datasets with #Worker increases from 16 to 256.
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solver in the distributed environment. Furthermore, the dis-
tributed algorithm supports a highly flexible communication
mode. Especially, the local solvers update their local parameters
directly, which reduces the need for communication, and the pro-
posed 2D-TGSA can help to improve communication efficiency in
the distributed environment. We reduce computational complex-
ity and adaptively adjust penalty parameters at every iteration to
achieve faster training speeds while ensuring convergence guaran-
tees. Finally, we demonstrate the efficiency of our algorithm in an
extensive experimental comparison with state-of-the-art dis-
tributed algorithms. Our algorithm outperforms other widely used
methods on real-world distributed datasets.

A single synchronization method cannot meet the diverse
requirements of distributed training environments. Choosing
an appropriate synchronization method is therefore meaningful
for different distributed training environments. Future work
will focus on how to adaptively choose proper synchronization
modes according to different cluster environments
during training, instead of choosing only one synchronization
method.
14
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