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Abstract—Alternating direction method of multipliers 
(ADMM) is an efficient algorithm to solve large-scale machine 
learning problems in a distributed environment. To make full 
use of the hierarchical memory model in modern high-
performance computing systems, this paper implements a 
hybrid MPI/OpenMP parallelization of the asynchronous 
ADMM algorithm (AH-ADMM). The AH-ADMM algorithm
updates local variables in parallel by OpenMP threads and 
exchanges information between MPI processes, which relieves 
memory and communication pressure by replacing multi-
processing with multi-threading. Furthermore, for the SVM 
problem, the AH-ADMM algorithm speeds up the calculation of 
sub-problems through an efficient parallel optimization strategy.
This paper effectively combines the features of both algorithm 
design and programming model. Experiments on the 
Ziqiang4000 high-performance cluster demonstrate that the 
AH-ADMM algorithm scales better and run faster than the
existing distributed ADMM algorithms implemented by pure 
MPI. The AH-ADMM can reduce the communication overhead 
by up to 91.8% and increase the convergence rate by up to 36x.
For large datasets, the AH-ADMM can scale well on the cluster 
which over 129 cores.

Keywords—distributed ADMM algorithm, asynchronous 
communication, hybrid parallel programming model, MPI,
OpenMP

I. INTRODUCTION

The immense growth of data has made it necessary to 
solve large-scale machine learning problems in distributed 
environments. Therefore, how to take advantage of modern 
high-performance computing (HPC) resources to implement 
efficient distributed machine learning algorithms is an 
important problem. In general, many distributed machine 
learning problems can be expressed as the following global 
consensus optimization problem:min௫భ,..,௫ಿ,௭ ∑ ௜݂(ݔ௜) + .ݏ  (ݖ)݃ .ݐ ௜ݔ = ,ݖ ݅ = 1, … , ܰே௜ୀଵ . (1)

Where ݔ ∈ ℝௗ represents the model parameter, ݔ௜ ∈ ℝௗ is 
the local primal variable which is a local copy of the model 
parameter ݔ on each node, ݖ ∈ ℝௗ is the global consensus 
variable, ݀ is the number of the features. The objective 
function (ݔ)݂ is divided into ܰ parts, where each ௜݂ : ℝௗ → ℝ
is the local objective function. ݃: ℝௗ → ℝ ∪ {∞} is the
regularization function.

The alternating direction method of multipliers (ADMM) 
algorithm can derive the large global problem into smaller 
sub-problems and is suitable for a parallel solution in
distributed environments [1]. The ADMM algorithm has been 
applied to solve a variety of machine learning problems, such 
as Linear regression [2], Support vector machine (SVM) [3],
and many others. References [4][5] have been proved that 
there are advantages in solving SVM problems using the 
ADMM algorithm in a distributed environment. In this paper, 
we use the ADMM algorithm mainly to solve the optimization 
problem of SVM. For the parallelization and distributed 
implementation of the ADMM algorithm, one of the main 
approaches uses Message Passing Interface (MPI), such as 
[6]-[10]. However, the communication overhead and memory 
footprint will easily become limitations on the scalability of 
the ADMM algorithm when one tries to improve the time to 
solution by using a large number of cores. In addition, the lack
of fine-grain thread parallelism cannot effectively utilize 
shared memory of multi-core computing resources.

Multiple computing cores are becoming ubiquitous. Most 
HPC architectures comprise clusters of multi-core CPU nodes 
interconnected via a high-speed network supporting a 
hierarchical memory model—shared memory within a single 
node and distributed memory across the nodes [11]. It is 
meaningful to study how to utilize higher core counts of 
modern multi-core CPUs and the characteristics of the 
heterogeneous memory model. Rabenseifner et al. [12]
proposed a hybrid MPI/OpenMP parallel programming model.
OpenMP is a shared memory programming model which can 
provide automatic guidance for multithreaded parallel 
strategies. It makes the implementation of the parallel 
applications relatively easy but only run on the shared memory
[11]. The hybrid MPI/OpenMP parallel programming model
combines distributed memory parallelization on the node 
interconnect with shared memory parallelization inside each 
node. Experiments verify that the hybrid version outperforms
the pure MPI version for several machine learning algorithms
[13][14]. Mironov et al. [15] analyzed and proved the 
effectiveness of the hybrid MPI/OpenMP parallel 
programming model in reducing the overall memory footprint 
of the Hartree-Fock method. However, for the ADMM 
algorithms, very few efforts have focused on the efficient 
implementation of hybrid parallelization so far. The difficulty 
in implementing applications by hybrid MPI/OpenMP 
approach is how to combines the characteristics of the
algorithm and programming models.
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In this paper, in order to make full use of the computing 
resources of multicore nodes and the advantages of the
heterogeneous memory model in modern high-performance 
computing systems, we propose an asynchronous ADMM 
algorithm based on a hybrid MPI/OpenMP programming 
model (AH-ADMM). The AH-ADMM algorithm combines 
algorithm design and programming models. In general, the 
algorithm is logically divided into two-layer models. The fine-
grained thread parallelism within nodes is implemented in the 
local updating layer, and the process parallelism between 
nodes is implemented in the global updating layer. The main 
contributions of this paper include:

(1) Our proposed model uses multi-threading instead of 
multi-processing to calculate the sub-problem, which 
reduces the number of worker processes on a node.
Therefore, the memory footprint and communication
cost of the ADMM algorithm are saved.

(2) Since the calculation of sub-problems in the ADMM 
algorithm is time consuming [16], we also design an 
efficient multithreading optimization strategy to 
speed up the calculation of the sub-problems.

(3) The asynchronous communication strategy can 
reduce the waiting overhead in global communication.

Overall, the hybrid parallel approach improves the 
convergence rate of the ADMM algorithm and the computing 
capacity of a single node, thereby can scale well on the large-
scale HPC systems with multicore nodes. Experiments on the 
Ziqiang 4000 high-performance cluster of Shanghai 
University have proved, compared with AD-ADMM [6][7]
and HAD-ADMM [8], the AH-ADMM algorithm has better 
performance and higher scalability.

The structure of this paper is as follows. Section 2 
introduces the relevant background. Section 3 and 4 describe 
and analyze AH-ADMM. The results of the experiments are 
explained in Section 5. Finally, Section 6 concludes this paper 
and gives our future work.

II. BACKGROUND

The ADMM fits well with the distributed system because 
of its natural parallel characteristic. How to implement 
efficient parallelization of the ADMM algorithm in modern 
HPC systems is our concern. With the development of multi-
core CPUs,  the hybrid parallel programming model has 
received more attention.

A. Distributed ADMM algorithm
Boyd et al. [1] start from constructing the augmented 

Lagrangian ఘܮ to solve problem (1) by the ADMM algorithm.
Then, ,{௜ݔ})ఘܮ (ݖ is minimized by updating ݔ and ݖ
alternately. The expression of ఘܮ is shown in (2) and the 
iterative formulas of the ADMM algorithm are shown in (3)-
(5): ,{௜ݔ})ఘܮ ,ݖ ({௜ݕ} = ∑ ( ௜݂(ݔ௜) + ఘଶ ቛݔ௜ + ௬೔ఘ −ே௜ୀଵݖቛଶଶ) + .(ݖ)݃

(2)

௜௞ାଵݔ = argmin௫೔ ( ௜݂(ݔ௜) + ௜்ݔ ௜௞ݕ + ఘଶ ௜ݔ‖ − .(௞‖ଶଶݖ (3)

௞ାଵݖ = argmin௭ (ݖ)݃) + ఘଶ ∑ ฯݔ௜௞ାଵ + ௬೔ೖఘ − ฯଶݖ
ଶே௜ୀଵ ). (4)

௜௞ାଵݕ = ௜௞ݕ + ௜௞ାଵݔ)ߩ − .(௞ାଵݖ (5)

Where ௜ݕ ∈ ܴௗ is the local dual variable of ,௜ݔ ߩ > 0 is the 
penalty parameter. For the original synchronous ADMM 
algorithm [1], a process called master needs to wait for all the 
worker processes finishing their sub-problem calculation
before it can proceed. Due to the difference in computing 
speed and network delays between workers, the 
synchronization overhead becomes the bottleneck of 
algorithm efficiency. Therefore, the asynchronous distributed 
ADMM (AD-ADMM) algorithm [6][7] becomes a new 
research hotspot. In the AD-ADMM algorithm, two 
conditions to control the asynchrony: partial barrier 0< ܵ ≤ܰ and bounded delay ߬ > 0. Through these two conditions, 
the waiting time of each iteration is reduced, and the 
convergence of the algorithm is guaranteed.

While the implementation of AD-ADMM has been 
remarkably successful, it has the bottlenecks of memory 
footprint and communication cost. Recent ADMM 
parallelization efforts focused on the optimization of 
communication. Wang et al. [8] proposed an asynchronous 
distributed ADMM based on a hierarchical communication 
structure (HAD-ADMM). The HAD-ADMM algorithm 
groups the processes and sets a master process in each node 
called submaster. The master process is set up to communicate 
with each submaster process, which basically achieves load 
balancing. Xie et al. [10] implemented a hierarchical ring-
allreduce communication architecture to reduce the inter-node 
communication cost. Wang et al. [9] analyzed the features of 
high-dimensional sparse datasets and designed a strategy to
reduce the information transmitted between nodes. These 
algorithms are all implemented by pure MPI. The major issues
are additional data replication and communication overhead 
between processes within a node. Our work starts with the 
approach of parallelization implementation, aiming at 
improving the computing capacity of a single node and the 
scalability of the ADMM algorithm.

B. Hybrid MPI/OpenMP programming model
The hybrid MPI/OpenMP parallel programming model 

fits well with the hierarchical memory system. Jin et al. [11]
have proved that the hybrid approach can help to reduce the 
demand for resources (such as memory and network), which 
is very important for running jobs of large-scale datasets. 
However, the parallelization strategy between threads will 
affect the performance of the algorithm implemented by the 
hybrid approach and the hierarchical programming model 
may lead to complex application codes. These are problems
we need to solve. Rabenseifner et al. [12] pointed out, the 
hybrid model can be applied well to a certain class of 
applications with easily exploitable multi-level parallelism.
The characteristic of the ADMM algorithm makes itself very
suitable to be implemented by the hybrid model. The specifics 
will be discussed in Sections 3 and 4.

III. HIERARCHICAL ASYNCHRONOUS DISTRIBUTED ADMM
ALGORITHM

The ADMM algorithm can divide the original problem 
into multiple sub-problems, and each sub-problem can be 
solved in parallel on a separate node. Because of the 
independence of sub-problems and the characteristics of 
multi-level updating, we logically divide the algorithm 
updating procedure into two layers, which are the local 
updating layer and the global updating layer. This hierarchical 
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updating also makes the algorithm more adaptable to the 
hybrid MPI/OpenMP parallel programming model.

Given a dataset ܣ ∈ ܴ௟×ௗ, ݈ is the number of samples. We 
let ௜ܣ ∈ ܴ௟೔×ௗ be the ݅-th partition of all data, where ∑ ݈௜ே௜ୀଵ =݈. We consider the L2-regularized L2-Loss SVM problem.
The global consensus problem we need to solve can be 
described as formula (6):min௫೔,…௫ಿ,೥ (ݔ)݂ = ଵଶ ௜்ݔ ௜ݔ + ܥ ∑ ∑ max(1 −௝∈஺೔ே௜ୀଵ௝்ܾݔ ௝ܽ , 0)ଶ + ∑ ఘଶ ௜ݔ‖ − ଶଶே௜ୀଵ‖ݖ .ݏ. ௜ݔ   .ݐ = ݅   ݖ = 1, … , ܰ (6)

Where ܥ is a hyperparameter, ௝ܽ ∈ ܴௗ is the feature vectors
of the ݆-th sample of ܣ௜, ௝ܾ ∈ {−1, +1} is the label of ௝ܽ .

A. Local Updating Layer
In this layer, the AH-ADMM updates the local primal 

variable and the local dual variable by worker processes. The 
AH-ADMM allocates a process to each node and makes one
of the nodes as the master. Each worker is responsible for 
updating the local primal variable and local dual variable in 
parallel as formula (7)-(8):ݔ௜௞೔ାଵ = argmin௫೔ ܥ) ∑ max(1 − ௝ܾݔ௜் ௝ܽ , 0)ଶ௝∈஺೔ ௜்ݔ+ ௜௞೔ݕ + ఘଶ ௜ݔ‖ − .(ଶଶ‖ݖ̂

(7)

௜௞೔ାଵݕ = ௜௞೔ݕ + ௜௞೔ାଵݔ)ߩ − .(ݖ̂ (8)

Where ݇ is the clock the master keeps, which starts from zero 
and is incremented by 1 after each ݖ updating. Similarly, each 
worker has itself clock ݇௜ . ݖ̂ is the newest global variable
received from the master. To reduce the communication 
volume, the local primal variables and local dual variables can
be aggregated as formula (9) in advance before they are sent 
to the master: ௜௞೔ାଵݏ = ௜௞೔ାଵݔߩ + .௜௞೔ݕ (9)

B. Global Updating Layer
In this layer, the AH-ADMM updates the global variable 

by the master. According to the two conditions (partial barrier:
0< ܵ ≤ ܰ and bounded delay: ߬ > 0) of AD-ADMM [], the
master process asynchronously receives the ݏపෝ sent by workers݅ ( ݅ ∈ ܵ௞ᇱ ) , stores them in ݏ௜௞ାଵ and reset 1 to ߬௜
simultaneously. The ܵ௞ᇱ is the set of workers that have arrived 
when the clock of the master is ݇. The ߬௜ records the clock of 
worker ݅ last arrival which is stored in ߶௞. If a worker whose 
clock is greater than τ, the master should wait. When ܵ௞ᇱ ≥ ܵ,
the master can update the global variable as the formula (10). 
For the workers ݅ ∉ ܵ௞ᇱ , the master uses the last variable ݏ௜௞ to 
participate in the calculation and add 1 to ߬௜. Then workers ݅ ∈ܵ௞ᇱ receive the ݖ௞ାଵ.ݖ௞ାଵ = ଵேఘାଵ ∑ పෝே௜ୀଵݏ . (10)

The specific procedure is provided in Algorithm 1.

Algorithm 1: AH-ADMM: the asynchronous distributed 
ADMM based on the hybrid parallel programming model

AH-ADMM – local updating layer:
1: initialize:݇௜ = 0, ௜଴ݔ = 0, ௜଴ݕ = 0, ଴ݖ = 0.
2:   repeat

3:       wait until receiving ̂ݖ from the master;
4:       Parallel update
௜௞೔ାଵݔ           :5 by (7);
௜௞೔ାଵݕ            :6 by (8);
7:       update ௜௞೔ାଵݏ by (9);
8:       send ௜௞೔ାଵݏ to the master;
9:    set  ݇௜ ← ݇௜ + 1;
10:  until the stopping criterion is satisfied.

AH-ADMM – global updating layer:
1:   initialize:݇ = 0, ௜଴ݏ = 0, ݅ = 1, … ܰ,
                     {߬ଵ, ߬ଶ, … , ߬ே} = 0.

2:   repeat
3:      wait until receiving ݏపෝ from workers ݅,݅ ∈ ܵ௞ᇱ

such that ܵ௞ᇱ ≥ ܵ and max(߬ଵ, ߬ଶ, … , ߬ே) ≤ ߬;
4:     for worker ݅ ∈ ܵ௞ᇱ do
5:         ߬௜ ← 1;
௜௞ାଵݏ         :6 ← ;పෝݏ
7:      end for
8:       for worker ݅ ∉ ܵ௞ᇱ do
9:           ߬௜ ← ߬௜ + 1;
௜௞ାଵݏ         :10 ← ;௜௞ݏ
11:    end for
12:    update ௞ାଵݖ by (10);
13:    broadcast ௞ାଵݖ to all the workers in the set ܵ௞ᇱ ;
14:  set ݇ ← ݇ + 1
15:  until the stopping criterion is satisfied;

IV. DESIGN AND IMPLEMENTATION OF THE HYBRID 
MPI/OPENMP PARALLELIZATION OF THE  DISTRIBUTED 

ASYNCHRONOUS ADMM ALGORITHM

The AH-ADMM algorithm is divided into two layers,
which fits the hybrid MPI/OpenMP parallel programming 
model well. The details of the algorithm are described in 
Section 3. In this section, we mainly discuss the hybrid 
MPI/OpenMP parallelization implementation of the AH-
ADMM algorithm. By the way, our hybrid parallel 
programming model is implemented on the original 
asynchronous ADMM algorithm framework in this paper, but 
can also be extended to ADMM algorithms based on other 
distributed frameworks, such as parameter servers, etc.

Our main idea is to implement hybrid parallelism through 
a multi-level parallelism mechanism. This hybrid parallel 
programming model is adapted to the hierarchical memory 
model of HPC systems. We divide the hybrid model into 
node-level parallelism and cluster-level parallelism. For 
different updating layers, the different levels of programming 
models are applied by analyzing the characteristics of the 
distributed AH-ADMM algorithm.

A. The implementation of the node-level parallelism by 
OpenMP: 
As mentioned earlier, the updating of the local primal 

variable ݔ௜ is an independent sub-problem to each worker and 
the calculation of sub-problems in the distributed ADMM 
algorithm is time consuming. Therefore, on the local updating 
layer, we assign one MPI process on each worker node to 
update the local variables ( ,௜ݔ ௜ݕ ). Meanwhile, the multi-
threading is used to update the local variables in parallel on 
the shared memory by OpenMP. It should be noted that the 
local update layer has two parallel levels: node-level and 
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cluster-level.

There are a master thread and ܶ threads in the OpenMP 
parallel region of each MPI process. OpenMP is used to 
control ܶ threads to calculate the sub-problem(ݔ௜) and ݕ௜ in 
parallel, the master thread is responsible for waking up 
parallel threads and obtains the sum computed by the threads. 
The updating of ݕ௜ is easy, but the updating of sub-problem by
different optimization algorithms usually lead to complex 
codes. Therefore, we only implement the parallelization of 
partial operations which are the bottleneck of sub-problem 
calculation. We will introduce the parallel optimization 
strategy for the sub-problem in detail in Section 4.2. 

B. The implementation of the cluster-level parallelism by 
MPI:
For the updating of the global variable, the AH-ADMM 

algorithm needs to receive all local variables and send the 
global variable to workers. Therefore, cluster-level 
parallelism is implemented for the global updating layer.

The MPI is used to transfer the variables across distributed 
memory nodes and the communication mode is changed to 
asynchronization. MPI is used for communication between
processes. On each worker node, the MPI calls are performed 
by the master thread of the MPI processes which sends the 
master ݏ௜. On the master node, a master process is set. The 
model parameters ௜ݏ is received and the global variable ݖ is 
sent by the master process. The blocking MPI calls and wait 
calls are for fine control of asynchronous message passing.

Fig. 1 shows the sequence of important events that may 
occur during the iteration of the AH-ADMM algorithm. The 
sub-problems are calculated in parallel by multi-threading on 
each worker node. Since ܵ = 2, the master only needs to wait 
for two updated parameters ௜ݔ of worker ݅ ∈ ܵ௞ᇱ arriving to 
update ݖ, and then send ݖ to worker ݅ ∈ ܵ௞ᇱ . When the master 
receives the updating of worker 2, it cannot update 
immediately. This is because ߬ଵ > ߬ and the master needs to 
wait for the updating of worker 1 reaching to update ݖ.

Fig. 1. The sequence of important events in an example run of AH-
ADMM where S=2,τ=1. The dashed arrow represents the OpenMP is used, 

and the solid arrow represents the MPI is used.

C. Parallel Optimization Strategy for the Sub-problem
1) Parallel dual coordinate descent algorithm: The 

ADMM algorithm provides the freedom to propose efficient 
methods for solving the sub-problems in distributed machines.

In this section, we use the parallel dual coordinate descent 
algorithm to solve the L2-regularized L2-Loss SVM problem.
The dual form of (7) can be written as the formula (11):minఈ (ߙ)݂ = ଵଶఘ ்ߙ തܳߙ − .ݏ   ߙ்݀ .ݐ ௝ߙ ≥ 0,   ∀݆. (11)

Where തܳ = ܳ + ,ܦ ܳ௜௝ = ܾ௜ ௝ܾܽ௜் ௝ܽ, D is a diagonal matrix, ܦ௝௝ = (ܥ2)/ߩ , ݀ = [1 − ܾଵ்ܽݒଵ, … ,1 − ܾ௦்ܽݒ௦]் ,{ܽଵ … ܽ௦} denotes the data in ܣ௜ and ݒ = ௞ݖ − ௬೔ೖఘ .

The dual coordinate descent algorithm [17] optimizes one 
variable in ߙ at a time and then circularly moves to the next
variable and so on. In other words, for any ݆, we can optimize ߙ௝ while other variables are fixed. Let G௝(௧) be the partial 
derivative of ݂(ߙ) with respect to ௝ߙ at the th iteration, then-ݐ
we have: G௝(௧) = ௝ܾ࢝(௧)் ௝ܽ − 1 + .௝(௧)ߙ௝௝ܦ (12)

Where ࢝(௧) = ∑ ௝ܾߙ௝(௧) ௝ܽ௦௝ୀଵ + ݒ . Thus, the optimal ߙ௝ will 
be the root of G௝(௧) projected on [0, ∞). We can update ߙ௝ as:ߙ௝(௧ାଵ) = max (ߙ௝(௧) − ୋೕ(೟)ொതೕೕ , 0). (13)

The main calculation task of each iteration of the dual 
coordinate descent method is (12), so parallel optimization is 
carried out for this part. We apply and improve the parallel 
dual coordinate descent method in [18] to make it suitable for 
parallel optimization of the sub-problems in the distributed 
ADMM algorithm. Firstly, select a set ܤ and split all data{ܽଵ, … , ܽ௦} to blocks. Then calculate the G௝(௧) with each block
in parallel. The ௝ߙ can be parallelized by using OpenMP:

1:  for all ݆ ∈ ܤ do in parallel
2:       G௝(௧) ← ௝ܾ࢝(௧)் ௝ܽ − 1 + ௝(௧)ߙ௝௝ܦ
3: ௝(௧ାଵ)ߙ       ← max ቆߙ௝(௧) − ୋೕ(೟)ொതೕೕ , 0ቇ
4:  ࢝(௧ାଵ) = ∑ ௝ܾߙ௝(௧ାଵ) ௝ܽ௦௝ୀଵ + ݒ

However, we can see that the calculation of ࢝(௧) becomes 
the bottleneck because it is much more time-consuming than 
the updating of ௝(௧)ߙ  and the calculation is repeated for each
iteration. Calculating ࢝(௧) in parallel is much more difficult 
than calculating G௝(௧) in parallel because two threads may want 
to update the same component of  ࢝(௧) simultaneously.  
Instead, we design the algorithm so that the ࢝(௧) update only 
accounts for a small part of the total calculation. Algorithm 2 
shows the details:

Algorithm 2: A parallel dual coordinate descent algorithm
for solving the sub-problems:

1:  Initialize ,(଴)ߙ (଴)ݓ = ∑ ௝ܾߙ௝(଴) ௝ܽ௦௝ୀଵ + ݒ
     and ߝ, 0 < ̅ߝ ≪ .ߝ

2:  while true do
ெ஺௑ܩ      :3 ← −∞;
4:      Split {1, … , {ݏ to ܤത, … , ;തതതത்ܤ
ݐ      :5 ← 0;
6:      !$omp parallel shared (ߙ, ࢝, (ܩ & private(݆)
݀ܽ݁ݎℎݐ݅      :7 ←omp_get_thread_num();
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8:      for തܤ in ܤത, … , തതതത்ܤ do
9:          !$omp do schedule(static)
10:        for all ݆ ∈ തܤ do in parallel
11:         G௝(௧)(: , (݀ܽ݁ݎℎݐ݅ ← ௝ܾ࢝(௧)் ௝ܽ − 1 + ;௝(௧)ߙ௝௝ܦ
12:        !$omp master
ெ஺௑ܩ       :13 ← max(ܩெ஺௑, max௝∈஻ത |G௝(௧)|);

ܤ      :14 ← ቄ݆|݆ ∈ ,തܤ |G௝(௧)| ≥ ;ቅߝߜ
15:        for all ݆ ∈ ܤ do

16:            ௝݀(௧) ← max ቆߙ௝(௧) − ୋೕ(೟)ொതೕೕ , 0ቇ − ;௝(௧)ߙ
17:            if |݀| ≥ ̅ߝ then
௝(௧ାଵ)ߙ               :18 ← ௝(௧)ߙ + ௝݀(௧);
19:               ࢝(௧ାଵ) ← ࢝(௧) + ௝݀(௧) ௝ܽ ௝ܾ;
ݐ               :20 ← ݐ + 1;
21:     !$omp end master
22:     !$omp barrier
23:     !$omp end parallel
24:    if ெ஺௑ܩ ≤ ߝ or ݐ = 0 then
25:       break;

Where ߝ is the stopping tolerance which typically larger than 
0.001 and ߜ ∈ (0,1) can be chosen not too small. Each time 
we calculate G௝(௧) in parallel of elements in a block തܤ and then
the master thread selects a subset ܤ ∈ തܤ for ௝݀(௧) updating.
Note that if the change of ߙ௝(௧) is too small, ࢝(௧) doesn’t need
to be updated. This operation is protected by implicit and 
explicit barriers. Fig. 2 shows a timeline for an example of a
sub-problem solved on a worker node.

2) Hot start optimization: We found that in each iteration 
of the ADMM algorithm, ௜௞೔ݓ may not change much. 
Therefore, in the local updating layer, ݓ௜௞೔ିଵ can be used as 
the starting point for updating the ௜௞೔ݓ . The master thread 
saves the previous ߙ in the shared memory and uses the 
previous ߙ for updating ݓ௜௞೔ିଵ. The previous ߙ is reused as ߙ଴. When starting a new iteration, the master thread can read ߙ଴ directly from the shared memory without reinitializing 
them.

Fig. 2. The timeline for an example of a sub-problem solved on a worker 
node.

D. Performance Analysis
The implementation of hybrid MPI/OpenMP which shares

the model parameters between the OpenMP threads via shared 
memory. It saves the extra memory footprint caused by the 
model parameters replication between processes. Furthermore, 
the sub-problem is calculated by threads instead of processes, 
which reduces the number of worker processes in the system.
Since threads within nodes share the memory, data collection 
and broadcasting can be done through replication rather than 
message passing. Therefore, the communication overhead is 
saved not only between nodes but also within nodes.

We specifically analyze the memory footprint on a 
worker node and the communication volume in an iteration 
in the two implementations, as shown in Table 2. For 
simplicity, the symbols for the variables that are frequently 
used in the rest of the paper are shown in Table 1.

TABLE I. NOTATIONS

Variable Description Variable Description݈ Number of samples ݀ Number of featuresܰ Number of worker 
processes  Number of nodes ܩ

஼ܰ೔ Number of cores 
used by each worker 
node 

஼ܰ Number of cores 
used by all nodes 

ܲ Number of 
processes of each 
node 

ܶ Number of threads 
of each node 

TABLE II. QUANTITATIVE ANALYSIS OF MEMORY FOOTPRINT AND 
COMMUNICATION VOLUME IN AN ITERATION OF THE TWO 

IMPLEMENTATIONS

Implementation Memory footprint Communication 
volume

Hybrid
MPI/OpenMP ுܯ = ݉஺ܩ − 1 + 3݉௣݀ ܪܥ = ܵ݀݌2݉
Pure MPI ௉ܯ = ݉஺ܩ − 1 + 3݉௣݀ ஼ܰ೔ ܲܥ = ݅ܥܰܵ݀݌3݉

Where ݉஺ denotes the memory footprint of the dataset, ݉௣ denotes the number of bytes of a model parameter, ܵ is the 
number of updated variables the master needs to wait. The 
updating of sub-problems takes ܱ(|ܤ|݀). We can calculate 
the difference between the communication volume and 
memory footprint of the two implementations as ௉ܥ − ுܥ =(3 ஼ܰ೔ − 2)݉௣݀ܵ and ௉ܯ − ுܯ = (3 ஼ܰ೔ − 3)݉௣݀. We can 
see that when ஼ܰ೔ > 1 , the communication volume and 
memory footprint of the hybrid parallel implementation will 
be less than the implementation of pure MPI. In general, the 
hybrid parallel implementation of the distributed ADMM 
algorithm can effectively reduce the communication cost and 
memory footprint, which achieves the reduction of the 
convergence time and improving the scalability of the 
distributed ADMM algorithm.

V. EXPERIMENTS

In this section, the corresponding experimental 
comparisons are performed to evaluate the effectiveness of the 
AH-ADMM algorithm. Our algorithm is compared with two 
algorithms implemented by pure MPI, which are the 
asynchronous ADMM algorithm (AD-ADMM) [6] and the 
ADMM algorithm based on the hierarchical communication 
structure (HAD-ADMM) [8]. These two algorithms have been 
introduced in Section 2. All three algorithms use the dual 
coordinate descent method to solve the sub-problems.

A. Experimental Environment and Implementation
The algorithms are tested on the cluster supercomputer 

“Ziqiang 4000” of Shanghai University. We used 9 nodes 
where each node has two intel E5-2690 CPU (2.9GHZ/8-core) 
and 64GB RAM. One of the nodes is set as master, and the 
rest are workers. All algorithms are implemented in C++ using 
MPICH v3.9.5 and OpenMP v3.0. We consider two large 
datasets: rcv1 and url. The specific information of the datasets 
is shown in Table 3. Each dataset is divided into a training 
dataset and a test dataset according to the ratio of 8:2. Besides, 
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we randomly shuffle the data to different nodes to ensure that 
class labels in the data are balanced.

TABLE III. SUMMARY OF THE DATASET.

Dataset l d Densitya

rcv1 677,399 47,236 0.155%

url 2,396,130 3,231,961 0.004%

a. Density is the average ratio of nonzero features per sample

We set the penalty parameter ߩ = 1, the partial barrierܵ = 4, and the bounded delay ߬ = 4. We use the dual residual ݎ௞ and the primal residual ݏ௞ as the stop criteria of these three
Algorithms. The definitions of ݎ and ݏ are shown in (14). If 
(15) and (16) are established, the algorithm stops ௜௞ାଵݎ.[1] = ௜௞ାଵݔ − ௞ାଵݏ,௞ାଵݖ = ௞ାଵݖ)ߩ − .(௞ݖ (14)ቛ௥೔ೖశభቛమே ≤ ݀√ܵܤܣ + ܮܧܴ ×max ቄଵே ∑ ฮݔ௜௞ାଵฮଶ, ௞ାଵ‖ଶே௜ୀଵݖ‖ ቅ.

(15)

௞ାଵ‖ଶݏ‖ ≤ ܵܤܣ × √݀ + ܮܧܴ × ଵே ∑ ฮݕߩ௜௞ାଵฮଶே௜ୀଵ . (16)

Both the absolute error ܵܤܣ and the relative error ܴܮܧ are set 
to 0.001.

B. Convergence Test
The training time vs. relative error is used to measure the 

convergence rate of these three algorithms. The definition of 
relative error ௥݂௘௥௥ is shown in (17).

௥݂௘௥௥ = (݂ − ௕݂௘௦௧)/ ௕݂௘௦௧ . (17)

Where ݂ represents the value of the loss function in the 
current state and ௕݂௘௦௧ represents the minimum value of the 
loss function obtained from all algorithms.

We tested the three algorithms with ஼ܰ = 65, ஼ܰ = 33,
and ஼ܰ = 17. For AD-ADMM and HAD-ADMM, ܲ = ஼ܰ೔
and ܶ = 1. For AH-ADMM, ܶ = ஼ܰ೔, and ܲ = 1. As shown 
in Fig. 3, in the case of using the same number of cores, the 
AH-ADMM algorithm has the fastest convergence rate. This
is because the AH-ADMM reduces the number of sub-
problems and solves only one sub-problem at each node, 
which can reduce the synchronization overhead and 
communication time. Besides, For the dataset of url, the 
acceleration of the convergence rate is more obvious.

Compared with AD-ADMM, the convergence rate of AH-
ADMM can increase by 36.36 times when 65 cores are used. 
However, for the dataset of rcv1, the convergence rate only 
increases by 1.15-1.48 times. Furthermore, as Nେ౟ increases, 
the AH-ADMM algorithm often becomes faster. This 
observation confirms the importance of computing sub-
problems in parallel with using the advantages of multi-core.

C. Performance Test
1) Accuracy test: We tested the training time vs. accuracy 

of the three algorithms to measure the performance. The 
accuracy ܥܣ is defined as the ratio of the number of samples 
correctly classified by the algorithm to the total number of 
samples for a given test data set. The specific definition is 
shown in (18). AC = ୬౨౟ౝ౞౪୬౪౥౪౗ౢ . (18)

Where n୰୧୥୦୲ represents the number of samples which are
predicted correctly and n୲୭୲ୟ୪ represents the total number of 
testing samples.

As can be seen from Fig. 4, the AH-ADMM algorithm is 
the fastest approach to achieve the best accuracy and will not 
reduce the accuracy. On the other hand, it can be found that 
for the AH-ADMM algorithm, the change of Nେ౟ does not 
affect the best accuracy.

2) Training time analysis: We define the training time 
includes computation time and communication time. The 
computation time includes the optimization time of the sub-
problem, the communication time includes the time the 
master waits to receive ݏ௜, and the time the master sent ݖ to 
workers. We analyze the training time of the three algorithms 
when they reach the same accuracy in Fig. 5. We can see that 
the computation time of the AH-ADMM algorithm is longer 
than the other two algorithms. This is because the 
synchronization overhead among threads will slow down the 
system in updating local variables with OpenMP. For smaller 
datasets such as rcv1, the effect of this additional overhead is
more obvious. On the contrary, the AH-ADMM algorithm 
has a satisfied performance in the reduction of 
communication time. For AH-ADMM, the communication 
cost can be reduced by up to 91.8% when ஼ܰ = 65 compared 
with AD-ADMM. In general, the AH-ADMM algorithm can 
achieve higher accuracy in a shorter time.

Fig. 3. Convergence comparisons between the three algorithms on the datasets: rcv1(a) and url(b).
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Fig. 4. Performance comparisons between the three algorithms on the datasets: rcv1(a) and url(b).

Fig. 5. The training time of the three algorithms on the datasets: rcv1(a) and url(b).

Fig. 6. Scalability of the three algorithms on the dataset: url(a) and kdd12(b).

D. Scalability Test
1) Speedup test: We tested the speedup of the three 

algorithms to measure the scalability shown in Fig. 6(a). The 
speedup ܵܲ is defined as (19).

ܵܲ = ௧(ଵ)௧(ே಴೔). (19)

Where (1)ݐ represents the training time when one core is used 
by each node, ݐ( ஼ܰ೔) represents the training time when ஼ܰ೔
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cores are used by each node. The training time refers to the 
system time for the algorithm to reach the best accuracy.

It can be seen from Fig. 6(a) that the speedup of the other 
two algorithms has increased as ஼ܰ೔ increases in addition to 
the AD-ADMM. When ஼ܰ೔ = 8, the speed of the AH-ADMM
can be increased to 2.59 times. However, we also find that the 
speedup does not increase linearly with ஼ܰ೔ and there is still a 
large gap from the ideal speedup.

2) The test of the maximum number of cores available on 
a single node: To verify the reduction in memory overhead
and the impact of memory footprint on the scalability, we 
tested three algorithms for the maximum number of cores 
available on a node.

We experimented with three algorithms on the big dataset
kdd12 of size about 20GB. The number of samples is 
149,639,105 and the number of the features is 54,686,452. In 
this experiment, we tested the training time vs. cores used by 
each node when reaching the same accuracy. The results are 
shown in Fig. 6(b). It can be found that when the number of 
cores used by each node reaches 16, the AD-ADMM and the 
HAD-ADMM cannot run anymore. This is where memory 
limitations come into play. Although our hybrid approach can 
use 16 cores to calculate simultaneously, there is no obvious
performance improvement compared to using 12 cores. The 
synchronization overhead between threads limits the 
scalability of the hybrid approach also.

E. Summary of Experiments
In this section, we show the test results of convergence rate,

performance and scalability of the three algorithms.
Compared with the AD-ADMM, the convergence rate of the 
AH-ADMM can increase by 36.36 times when 65 cores are 
used. Meanwhile, the AH-ADMM becomes much faster as the 
number of cores used by each node increases, which proves 
the effectiveness of using more cores to compute sub-
problems by multi-threading. It can be found that the main 
reason for the decrease in training time is the reduction of
communication time which can be up to 91.8%. We measure 
the scalability of the algorithm by the speedup and the 
maximum number of cores available on a node. Although the 
AH-ADMM algorithm has better scalability compared with 
the other two algorithms, it has not reached our ideal due to 
the synchronization overhead between threads in solving sub-
problems.

VI. CONCLUSION

In this paper, aiming at making full use of modern HPC 
platforms with multicore nodes, we implement the hybrid 
MPI/OpenMP parallelization of the distributed asynchronous 
ADMM algorithm (AH-ADMM). As we know, it is the first 
attempt at the ADMM algorithm implemented by the hybrid 
MPI/OpenMP parallel programming model. Experiments 
show that the AH-ADMM algorithm has the fastest 
convergence rate and best scalability compared with the AD-
ADMM algorithm and the HAD-ADMM algorithm. However, 
the scalability of the AH-ADMM algorithm still does not 
achieve ideal efficiency. It may be due to the design of the 
sub-problem optimization strategy. Therefore, we will 
continue to study the efficient parallelization approaches of 
the sub-problem in future work.
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