
An efficient hybrid MPI/OpenMP parallelization of
the asynchronous ADMM algorithm

1st Qinnan Qiu
Shanghai University

School of Computer Engineering and Science
Shanghai, China

qqn1996@shu.edu.cn

2nd Yongmei Lei
Shanghai University

School of Computer Engineering and Science
Shanghai, China
lei@shu.edu.cn

3rd Dongxia Wang
Shanghai University

School of Computer Engineering and Science
Shanghai, China

wangdongxia1983@126.com

4th Guozheng Wang
Shanghai University

School of Computer Engineering and Science
Shanghai, China

gzh.wang@outlook.com

Abstract—Alternating direction method of multipliers
(ADMM) is an efficient algorithm to solve large-scale machine
learning problems in a distributed environment. To make full
use of the hierarchical memory model in modern high-
performance computing systems, this paper implements a
hybrid MPI/OpenMP parallelization of the asynchronous
ADMM algorithm (AH-ADMM). The AH-ADMM algorithm
updates local variables in parallel by OpenMP threads and
exchanges information between MPI processes, which relieves
memory and communication pressure by replacing multi-
processing with multi-threading. Furthermore, for the SVM
problem, the AH-ADMM algorithm speeds up the calculation of
sub-problems through an efficient parallel optimization strategy.
This paper effectively combines the features of both algorithm
design and programming model. Experiments on the
Ziqiang4000 high-performance cluster demonstrate that the
AH-ADMM algorithm scales better and run faster than the
existing distributed ADMM algorithms implemented by pure
MPI. The AH-ADMM can reduce the communication overhead
by up to 91.8% and increase the convergence rate by up to 36x.
For large datasets, the AH-ADMM can scale well on the cluster
which over 129 cores.

Keywords—distributed ADMM algorithm, asynchronous
communication, hybrid parallel programming model, MPI,
OpenMP

I. INTRODUCTION

The immense growth of data has made it necessary to
solve large-scale machine learning problems in distributed
environments. Therefore, how to take advantage of modern
high-performance computing (HPC) resources to implement
efficient distributed machine learning algorithms is an
important problem. In general, many distributed machine
learning problems can be expressed as the following global
consensus optimization problem:min௫భ,..,௫ಿ,௭ ∑ ௜݂(ݔ௜) + .ݏ (ݖ)݃ .ݐ ௜ݔ = ,ݖ ݅ = 1, … , ܰே௜ୀଵ . (1)

Where ݔ ∈ ℝௗ represents the model parameter, ݔ௜ ∈ ℝௗ is
the local primal variable which is a local copy of the model
parameter ݔ on each node, ݖ ∈ ℝௗ is the global consensus
variable, ݀ is the number of the features. The objective
function (ݔ)݂ is divided into ܰ parts, where each ௜݂ : ℝௗ → ℝ
is the local objective function. ݃: ℝௗ → ℝ ∪ {∞} is the
regularization function.

The alternating direction method of multipliers (ADMM)
algorithm can derive the large global problem into smaller
sub-problems and is suitable for a parallel solution in
distributed environments [1]. The ADMM algorithm has been
applied to solve a variety of machine learning problems, such
as Linear regression [2], Support vector machine (SVM) [3],
and many others. References [4][5] have been proved that
there are advantages in solving SVM problems using the
ADMM algorithm in a distributed environment. In this paper,
we use the ADMM algorithm mainly to solve the optimization
problem of SVM. For the parallelization and distributed
implementation of the ADMM algorithm, one of the main
approaches uses Message Passing Interface (MPI), such as
[6]-[10]. However, the communication overhead and memory
footprint will easily become limitations on the scalability of
the ADMM algorithm when one tries to improve the time to
solution by using a large number of cores. In addition, the lack
of fine-grain thread parallelism cannot effectively utilize
shared memory of multi-core computing resources.

Multiple computing cores are becoming ubiquitous. Most
HPC architectures comprise clusters of multi-core CPU nodes
interconnected via a high-speed network supporting a
hierarchical memory model—shared memory within a single
node and distributed memory across the nodes [11]. It is
meaningful to study how to utilize higher core counts of
modern multi-core CPUs and the characteristics of the
heterogeneous memory model. Rabenseifner et al. [12]
proposed a hybrid MPI/OpenMP parallel programming model.
OpenMP is a shared memory programming model which can
provide automatic guidance for multithreaded parallel
strategies. It makes the implementation of the parallel
applications relatively easy but only run on the shared memory
[11]. The hybrid MPI/OpenMP parallel programming model
combines distributed memory parallelization on the node
interconnect with shared memory parallelization inside each
node. Experiments verify that the hybrid version outperforms
the pure MPI version for several machine learning algorithms
[13][14]. Mironov et al. [15] analyzed and proved the
effectiveness of the hybrid MPI/OpenMP parallel
programming model in reducing the overall memory footprint
of the Hartree-Fock method. However, for the ADMM
algorithms, very few efforts have focused on the efficient
implementation of hybrid parallelization so far. The difficulty
in implementing applications by hybrid MPI/OpenMP
approach is how to combines the characteristics of the
algorithm and programming models.

563

2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)

978-1-6654-3574-1/21/$31.00 ©2021 IEEE
DOI 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00083

20
21

 IE
EE

 In
tl

C
on

f o
n

Pa
ra

lle
l &

 D
is

tri
bu

te
d

Pr
oc

es
si

ng
 w

ith
 A

pp
lic

at
io

ns
, B

ig
 D

at
a

&
 C

lo
ud

 C
om

pu
tin

g,
 S

us
ta

in
ab

le
 C

om
pu

tin
g

&
 C

om
m

un
ic

at
io

ns
, S

oc
ia

l C
om

pu
tin

g
&

 N
et

w
or

ki
ng

 (I
SP

A
/B

D
C

lo
ud

/S
oc

ia
lC

om
/S

us
ta

in
C

om
) |

 9
78

-1
-6

65
4-

35
74

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

PA
-B

D
C

lo
ud

-S
oc

ia
lC

om
-S

us
ta

in
C

om
52

08
1.

20
21

.0
00

83

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on February 20,2024 at 04:47:42 UTC from IEEE Xplore. Restrictions apply.

In this paper, in order to make full use of the computing
resources of multicore nodes and the advantages of the
heterogeneous memory model in modern high-performance
computing systems, we propose an asynchronous ADMM
algorithm based on a hybrid MPI/OpenMP programming
model (AH-ADMM). The AH-ADMM algorithm combines
algorithm design and programming models. In general, the
algorithm is logically divided into two-layer models. The fine-
grained thread parallelism within nodes is implemented in the
local updating layer, and the process parallelism between
nodes is implemented in the global updating layer. The main
contributions of this paper include:

(1) Our proposed model uses multi-threading instead of
multi-processing to calculate the sub-problem, which
reduces the number of worker processes on a node.
Therefore, the memory footprint and communication
cost of the ADMM algorithm are saved.

(2) Since the calculation of sub-problems in the ADMM
algorithm is time consuming [16], we also design an
efficient multithreading optimization strategy to
speed up the calculation of the sub-problems.

(3) The asynchronous communication strategy can
reduce the waiting overhead in global communication.

Overall, the hybrid parallel approach improves the
convergence rate of the ADMM algorithm and the computing
capacity of a single node, thereby can scale well on the large-
scale HPC systems with multicore nodes. Experiments on the
Ziqiang 4000 high-performance cluster of Shanghai
University have proved, compared with AD-ADMM [6][7]
and HAD-ADMM [8], the AH-ADMM algorithm has better
performance and higher scalability.

The structure of this paper is as follows. Section 2
introduces the relevant background. Section 3 and 4 describe
and analyze AH-ADMM. The results of the experiments are
explained in Section 5. Finally, Section 6 concludes this paper
and gives our future work.

II. BACKGROUND

The ADMM fits well with the distributed system because
of its natural parallel characteristic. How to implement
efficient parallelization of the ADMM algorithm in modern
HPC systems is our concern. With the development of multi-
core CPUs, the hybrid parallel programming model has
received more attention.

A. Distributed ADMM algorithm
Boyd et al. [1] start from constructing the augmented

Lagrangian ఘܮ to solve problem (1) by the ADMM algorithm.
Then, ,{௜ݔ})ఘܮ (ݖ is minimized by updating ݔ and ݖ
alternately. The expression of ఘܮ is shown in (2) and the
iterative formulas of the ADMM algorithm are shown in (3)-
(5): ,{௜ݔ})ఘܮ ,ݖ ({௜ݕ} = ∑ (௜݂(ݔ௜) + ఘଶ ቛݔ௜ + ௬೔ఘ −ே௜ୀଵݖቛଶଶ) + .(ݖ)݃

(2)

௜௞ାଵݔ = argmin௫೔ (௜݂(ݔ௜) + ௜்ݔ ௜௞ݕ + ఘଶ ௜ݔ‖ − .(௞‖ଶଶݖ (3)

௞ାଵݖ = argmin௭ (ݖ)݃) + ఘଶ ∑ ฯݔ௜௞ାଵ + ௬೔ೖఘ − ฯଶݖ
ଶே௜ୀଵ). (4)

௜௞ାଵݕ = ௜௞ݕ + ௜௞ାଵݔ)ߩ − .(௞ାଵݖ (5)

Where ௜ݕ ∈ ܴௗ is the local dual variable of ,௜ݔ ߩ > 0 is the
penalty parameter. For the original synchronous ADMM
algorithm [1], a process called master needs to wait for all the
worker processes finishing their sub-problem calculation
before it can proceed. Due to the difference in computing
speed and network delays between workers, the
synchronization overhead becomes the bottleneck of
algorithm efficiency. Therefore, the asynchronous distributed
ADMM (AD-ADMM) algorithm [6][7] becomes a new
research hotspot. In the AD-ADMM algorithm, two
conditions to control the asynchrony: partial barrier 0< ܵ ≤ܰ and bounded delay ߬ > 0. Through these two conditions,
the waiting time of each iteration is reduced, and the
convergence of the algorithm is guaranteed.

While the implementation of AD-ADMM has been
remarkably successful, it has the bottlenecks of memory
footprint and communication cost. Recent ADMM
parallelization efforts focused on the optimization of
communication. Wang et al. [8] proposed an asynchronous
distributed ADMM based on a hierarchical communication
structure (HAD-ADMM). The HAD-ADMM algorithm
groups the processes and sets a master process in each node
called submaster. The master process is set up to communicate
with each submaster process, which basically achieves load
balancing. Xie et al. [10] implemented a hierarchical ring-
allreduce communication architecture to reduce the inter-node
communication cost. Wang et al. [9] analyzed the features of
high-dimensional sparse datasets and designed a strategy to
reduce the information transmitted between nodes. These
algorithms are all implemented by pure MPI. The major issues
are additional data replication and communication overhead
between processes within a node. Our work starts with the
approach of parallelization implementation, aiming at
improving the computing capacity of a single node and the
scalability of the ADMM algorithm.

B. Hybrid MPI/OpenMP programming model
The hybrid MPI/OpenMP parallel programming model

fits well with the hierarchical memory system. Jin et al. [11]
have proved that the hybrid approach can help to reduce the
demand for resources (such as memory and network), which
is very important for running jobs of large-scale datasets.
However, the parallelization strategy between threads will
affect the performance of the algorithm implemented by the
hybrid approach and the hierarchical programming model
may lead to complex application codes. These are problems
we need to solve. Rabenseifner et al. [12] pointed out, the
hybrid model can be applied well to a certain class of
applications with easily exploitable multi-level parallelism.
The characteristic of the ADMM algorithm makes itself very
suitable to be implemented by the hybrid model. The specifics
will be discussed in Sections 3 and 4.

III. HIERARCHICAL ASYNCHRONOUS DISTRIBUTED ADMM
ALGORITHM

The ADMM algorithm can divide the original problem
into multiple sub-problems, and each sub-problem can be
solved in parallel on a separate node. Because of the
independence of sub-problems and the characteristics of
multi-level updating, we logically divide the algorithm
updating procedure into two layers, which are the local
updating layer and the global updating layer. This hierarchical

564

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on February 20,2024 at 04:47:42 UTC from IEEE Xplore. Restrictions apply.

updating also makes the algorithm more adaptable to the
hybrid MPI/OpenMP parallel programming model.

Given a dataset ܣ ∈ ܴ௟×ௗ, ݈ is the number of samples. We
let ௜ܣ ∈ ܴ௟೔×ௗ be the ݅-th partition of all data, where ∑ ݈௜ே௜ୀଵ =݈. We consider the L2-regularized L2-Loss SVM problem.
The global consensus problem we need to solve can be
described as formula (6):min௫೔,…௫ಿ,೥ (ݔ)݂ = ଵଶ ௜்ݔ ௜ݔ + ܥ ∑ ∑ max(1 −௝∈஺೔ே௜ୀଵ௝்ܾݔ ௝ܽ , 0)ଶ + ∑ ఘଶ ௜ݔ‖ − ଶଶே௜ୀଵ‖ݖ .ݏ. ௜ݔ .ݐ = ݅ ݖ = 1, … , ܰ (6)

Where ܥ is a hyperparameter, ௝ܽ ∈ ܴௗ is the feature vectors
of the ݆-th sample of ܣ௜, ௝ܾ ∈ {−1, +1} is the label of ௝ܽ .

A. Local Updating Layer
In this layer, the AH-ADMM updates the local primal

variable and the local dual variable by worker processes. The
AH-ADMM allocates a process to each node and makes one
of the nodes as the master. Each worker is responsible for
updating the local primal variable and local dual variable in
parallel as formula (7)-(8):ݔ௜௞೔ାଵ = argmin௫೔ ܥ) ∑ max(1 − ௝ܾݔ௜் ௝ܽ , 0)ଶ௝∈஺೔ ௜்ݔ+ ௜௞೔ݕ + ఘଶ ௜ݔ‖ − .(ଶଶ‖ݖ̂

(7)

௜௞೔ାଵݕ = ௜௞೔ݕ + ௜௞೔ାଵݔ)ߩ − .(ݖ̂ (8)

Where ݇ is the clock the master keeps, which starts from zero
and is incremented by 1 after each ݖ updating. Similarly, each
worker has itself clock ݇௜ . ݖ̂ is the newest global variable
received from the master. To reduce the communication
volume, the local primal variables and local dual variables can
be aggregated as formula (9) in advance before they are sent
to the master: ௜௞೔ାଵݏ = ௜௞೔ାଵݔߩ + .௜௞೔ݕ (9)

B. Global Updating Layer
In this layer, the AH-ADMM updates the global variable

by the master. According to the two conditions (partial barrier:
0< ܵ ≤ ܰ and bounded delay: ߬ > 0) of AD-ADMM [], the
master process asynchronously receives the ݏపෝ sent by workers݅ (݅ ∈ ܵ௞ᇱ) , stores them in ݏ௜௞ାଵ and reset 1 to ߬௜
simultaneously. The ܵ௞ᇱ is the set of workers that have arrived
when the clock of the master is ݇. The ߬௜ records the clock of
worker ݅ last arrival which is stored in ߶௞. If a worker whose
clock is greater than τ, the master should wait. When ܵ௞ᇱ ≥ ܵ,
the master can update the global variable as the formula (10).
For the workers ݅ ∉ ܵ௞ᇱ , the master uses the last variable ݏ௜௞ to
participate in the calculation and add 1 to ߬௜. Then workers ݅ ∈ܵ௞ᇱ receive the ݖ௞ାଵ.ݖ௞ାଵ = ଵேఘାଵ ∑ పෝே௜ୀଵݏ . (10)

The specific procedure is provided in Algorithm 1.

Algorithm 1: AH-ADMM: the asynchronous distributed
ADMM based on the hybrid parallel programming model

AH-ADMM – local updating layer:
1: initialize:݇௜ = 0, ௜଴ݔ = 0, ௜଴ݕ = 0, ଴ݖ = 0.
2: repeat

3: wait until receiving ̂ݖ from the master;
4: Parallel update
௜௞೔ାଵݔ :5 by (7);
௜௞೔ାଵݕ :6 by (8);
7: update ௜௞೔ାଵݏ by (9);
8: send ௜௞೔ାଵݏ to the master;
9: set ݇௜ ← ݇௜ + 1;
10: until the stopping criterion is satisfied.

AH-ADMM – global updating layer:
1: initialize:݇ = 0, ௜଴ݏ = 0, ݅ = 1, … ܰ,
 {߬ଵ, ߬ଶ, … , ߬ே} = 0.

2: repeat
3: wait until receiving ݏపෝ from workers ݅,݅ ∈ ܵ௞ᇱ

such that ܵ௞ᇱ ≥ ܵ and max(߬ଵ, ߬ଶ, … , ߬ே) ≤ ߬;
4: for worker ݅ ∈ ܵ௞ᇱ do
5: ߬௜ ← 1;
௜௞ାଵݏ :6 ← ;పෝݏ
7: end for
8: for worker ݅ ∉ ܵ௞ᇱ do
9: ߬௜ ← ߬௜ + 1;
௜௞ାଵݏ :10 ← ;௜௞ݏ
11: end for
12: update ௞ାଵݖ by (10);
13: broadcast ௞ାଵݖ to all the workers in the set ܵ௞ᇱ ;
14: set ݇ ← ݇ + 1
15: until the stopping criterion is satisfied;

IV. DESIGN AND IMPLEMENTATION OF THE HYBRID
MPI/OPENMP PARALLELIZATION OF THE DISTRIBUTED

ASYNCHRONOUS ADMM ALGORITHM

The AH-ADMM algorithm is divided into two layers,
which fits the hybrid MPI/OpenMP parallel programming
model well. The details of the algorithm are described in
Section 3. In this section, we mainly discuss the hybrid
MPI/OpenMP parallelization implementation of the AH-
ADMM algorithm. By the way, our hybrid parallel
programming model is implemented on the original
asynchronous ADMM algorithm framework in this paper, but
can also be extended to ADMM algorithms based on other
distributed frameworks, such as parameter servers, etc.

Our main idea is to implement hybrid parallelism through
a multi-level parallelism mechanism. This hybrid parallel
programming model is adapted to the hierarchical memory
model of HPC systems. We divide the hybrid model into
node-level parallelism and cluster-level parallelism. For
different updating layers, the different levels of programming
models are applied by analyzing the characteristics of the
distributed AH-ADMM algorithm.

A. The implementation of the node-level parallelism by
OpenMP:
As mentioned earlier, the updating of the local primal

variable ݔ௜ is an independent sub-problem to each worker and
the calculation of sub-problems in the distributed ADMM
algorithm is time consuming. Therefore, on the local updating
layer, we assign one MPI process on each worker node to
update the local variables (,௜ݔ ௜ݕ). Meanwhile, the multi-
threading is used to update the local variables in parallel on
the shared memory by OpenMP. It should be noted that the
local update layer has two parallel levels: node-level and

565

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on February 20,2024 at 04:47:42 UTC from IEEE Xplore. Restrictions apply.

cluster-level.

There are a master thread and ܶ threads in the OpenMP
parallel region of each MPI process. OpenMP is used to
control ܶ threads to calculate the sub-problem(ݔ௜) and ݕ௜ in
parallel, the master thread is responsible for waking up
parallel threads and obtains the sum computed by the threads.
The updating of ݕ௜ is easy, but the updating of sub-problem by
different optimization algorithms usually lead to complex
codes. Therefore, we only implement the parallelization of
partial operations which are the bottleneck of sub-problem
calculation. We will introduce the parallel optimization
strategy for the sub-problem in detail in Section 4.2.

B. The implementation of the cluster-level parallelism by
MPI:
For the updating of the global variable, the AH-ADMM

algorithm needs to receive all local variables and send the
global variable to workers. Therefore, cluster-level
parallelism is implemented for the global updating layer.

The MPI is used to transfer the variables across distributed
memory nodes and the communication mode is changed to
asynchronization. MPI is used for communication between
processes. On each worker node, the MPI calls are performed
by the master thread of the MPI processes which sends the
master ݏ௜. On the master node, a master process is set. The
model parameters ௜ݏ is received and the global variable ݖ is
sent by the master process. The blocking MPI calls and wait
calls are for fine control of asynchronous message passing.

Fig. 1 shows the sequence of important events that may
occur during the iteration of the AH-ADMM algorithm. The
sub-problems are calculated in parallel by multi-threading on
each worker node. Since ܵ = 2, the master only needs to wait
for two updated parameters ௜ݔ of worker ݅ ∈ ܵ௞ᇱ arriving to
update ݖ, and then send ݖ to worker ݅ ∈ ܵ௞ᇱ . When the master
receives the updating of worker 2, it cannot update
immediately. This is because ߬ଵ > ߬ and the master needs to
wait for the updating of worker 1 reaching to update ݖ.

Fig. 1. The sequence of important events in an example run of AH-
ADMM where S=2,τ=1. The dashed arrow represents the OpenMP is used,

and the solid arrow represents the MPI is used.

C. Parallel Optimization Strategy for the Sub-problem
1) Parallel dual coordinate descent algorithm: The

ADMM algorithm provides the freedom to propose efficient
methods for solving the sub-problems in distributed machines.

In this section, we use the parallel dual coordinate descent
algorithm to solve the L2-regularized L2-Loss SVM problem.
The dual form of (7) can be written as the formula (11):minఈ (ߙ)݂ = ଵଶఘ ்ߙ തܳߙ − .ݏ ߙ்݀ .ݐ ௝ߙ ≥ 0, ∀݆. (11)

Where തܳ = ܳ + ,ܦ ܳ௜௝ = ܾ௜ ௝ܾܽ௜் ௝ܽ, D is a diagonal matrix, ܦ௝௝ = (ܥ2)/ߩ , ݀ = [1 − ܾଵ்ܽݒଵ, … ,1 − ܾ௦்ܽݒ௦]் ,{ܽଵ … ܽ௦} denotes the data in ܣ௜ and ݒ = ௞ݖ − ௬೔ೖఘ .

The dual coordinate descent algorithm [17] optimizes one
variable in ߙ at a time and then circularly moves to the next
variable and so on. In other words, for any ݆, we can optimize ߙ௝ while other variables are fixed. Let G௝(௧) be the partial
derivative of ݂(ߙ) with respect to ௝ߙ at the th iteration, then-ݐ
we have: G௝(௧) = ௝ܾ࢝(௧)் ௝ܽ − 1 + .௝(௧)ߙ௝௝ܦ (12)

Where ࢝(௧) = ∑ ௝ܾߙ௝(௧) ௝ܽ௦௝ୀଵ + ݒ . Thus, the optimal ߙ௝ will
be the root of G௝(௧) projected on [0, ∞). We can update ߙ௝ as:ߙ௝(௧ାଵ) = max (ߙ௝(௧) − ୋೕ(೟)ொതೕೕ , 0). (13)

The main calculation task of each iteration of the dual
coordinate descent method is (12), so parallel optimization is
carried out for this part. We apply and improve the parallel
dual coordinate descent method in [18] to make it suitable for
parallel optimization of the sub-problems in the distributed
ADMM algorithm. Firstly, select a set ܤ and split all data{ܽଵ, … , ܽ௦} to blocks. Then calculate the G௝(௧) with each block
in parallel. The ௝ߙ can be parallelized by using OpenMP:

1: for all ݆ ∈ ܤ do in parallel
2: G௝(௧) ← ௝ܾ࢝(௧)் ௝ܽ − 1 + ௝(௧)ߙ௝௝ܦ
3: ௝(௧ାଵ)ߙ ← max ቆߙ௝(௧) − ୋೕ(೟)ொതೕೕ , 0ቇ
4: ࢝(௧ାଵ) = ∑ ௝ܾߙ௝(௧ାଵ) ௝ܽ௦௝ୀଵ + ݒ

However, we can see that the calculation of ࢝(௧) becomes
the bottleneck because it is much more time-consuming than
the updating of ௝(௧)ߙ and the calculation is repeated for each
iteration. Calculating ࢝(௧) in parallel is much more difficult
than calculating G௝(௧) in parallel because two threads may want
to update the same component of ࢝(௧) simultaneously.
Instead, we design the algorithm so that the ࢝(௧) update only
accounts for a small part of the total calculation. Algorithm 2
shows the details:

Algorithm 2: A parallel dual coordinate descent algorithm
for solving the sub-problems:

1: Initialize ,(଴)ߙ (଴)ݓ = ∑ ௝ܾߙ௝(଴) ௝ܽ௦௝ୀଵ + ݒ
 and ߝ, 0 < ̅ߝ ≪ .ߝ

2: while true do
ெ஺௑ܩ :3 ← −∞;
4: Split {1, … , {ݏ to ܤത, … , ;തതതത்ܤ
ݐ :5 ← 0;
6: !$omp parallel shared (ߙ, ࢝, (ܩ & private(݆)
݀ܽ݁ݎℎݐ݅ :7 ←omp_get_thread_num();

566

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on February 20,2024 at 04:47:42 UTC from IEEE Xplore. Restrictions apply.

8: for തܤ in ܤത, … , തതതത்ܤ do
9: !$omp do schedule(static)
10: for all ݆ ∈ തܤ do in parallel
11: G௝(௧)(: , (݀ܽ݁ݎℎݐ݅ ← ௝ܾ࢝(௧)் ௝ܽ − 1 + ;௝(௧)ߙ௝௝ܦ
12: !$omp master
ெ஺௑ܩ :13 ← max(ܩெ஺௑, max௝∈஻ത |G௝(௧)|);

ܤ :14 ← ቄ݆|݆ ∈ ,തܤ |G௝(௧)| ≥ ;ቅߝߜ
15: for all ݆ ∈ ܤ do

16: ௝݀(௧) ← max ቆߙ௝(௧) − ୋೕ(೟)ொതೕೕ , 0ቇ − ;௝(௧)ߙ
17: if |݀| ≥ ̅ߝ then
௝(௧ାଵ)ߙ :18 ← ௝(௧)ߙ + ௝݀(௧);
19: ࢝(௧ାଵ) ← ࢝(௧) + ௝݀(௧) ௝ܽ ௝ܾ;
ݐ :20 ← ݐ + 1;
21: !$omp end master
22: !$omp barrier
23: !$omp end parallel
24: if ெ஺௑ܩ ≤ ߝ or ݐ = 0 then
25: break;

Where ߝ is the stopping tolerance which typically larger than
0.001 and ߜ ∈ (0,1) can be chosen not too small. Each time
we calculate G௝(௧) in parallel of elements in a block തܤ and then
the master thread selects a subset ܤ ∈ തܤ for ௝݀(௧) updating.
Note that if the change of ߙ௝(௧) is too small, ࢝(௧) doesn’t need
to be updated. This operation is protected by implicit and
explicit barriers. Fig. 2 shows a timeline for an example of a
sub-problem solved on a worker node.

2) Hot start optimization: We found that in each iteration
of the ADMM algorithm, ௜௞೔ݓ may not change much.
Therefore, in the local updating layer, ݓ௜௞೔ିଵ can be used as
the starting point for updating the ௜௞೔ݓ . The master thread
saves the previous ߙ in the shared memory and uses the
previous ߙ for updating ݓ௜௞೔ିଵ. The previous ߙ is reused as ߙ଴. When starting a new iteration, the master thread can read ߙ଴ directly from the shared memory without reinitializing
them.

Fig. 2. The timeline for an example of a sub-problem solved on a worker
node.

D. Performance Analysis
The implementation of hybrid MPI/OpenMP which shares

the model parameters between the OpenMP threads via shared
memory. It saves the extra memory footprint caused by the
model parameters replication between processes. Furthermore,
the sub-problem is calculated by threads instead of processes,
which reduces the number of worker processes in the system.
Since threads within nodes share the memory, data collection
and broadcasting can be done through replication rather than
message passing. Therefore, the communication overhead is
saved not only between nodes but also within nodes.

We specifically analyze the memory footprint on a
worker node and the communication volume in an iteration
in the two implementations, as shown in Table 2. For
simplicity, the symbols for the variables that are frequently
used in the rest of the paper are shown in Table 1.

TABLE I. NOTATIONS

Variable Description Variable Description݈ Number of samples ݀ Number of featuresܰ Number of worker
processes Number of nodes ܩ

஼ܰ೔ Number of cores
used by each worker
node

஼ܰ Number of cores
used by all nodes

ܲ Number of
processes of each
node

ܶ Number of threads
of each node

TABLE II. QUANTITATIVE ANALYSIS OF MEMORY FOOTPRINT AND
COMMUNICATION VOLUME IN AN ITERATION OF THE TWO

IMPLEMENTATIONS

Implementation Memory footprint Communication
volume

Hybrid
MPI/OpenMP ுܯ = ݉஺ܩ − 1 + 3݉௣݀ ܪܥ = ܵ݀݌2݉
Pure MPI ௉ܯ = ݉஺ܩ − 1 + 3݉௣݀ ஼ܰ೔ ܲܥ = ݅ܥܰܵ݀݌3݉

Where ݉஺ denotes the memory footprint of the dataset, ݉௣ denotes the number of bytes of a model parameter, ܵ is the
number of updated variables the master needs to wait. The
updating of sub-problems takes ܱ(|ܤ|݀). We can calculate
the difference between the communication volume and
memory footprint of the two implementations as ௉ܥ − ுܥ =(3 ஼ܰ೔ − 2)݉௣݀ܵ and ௉ܯ − ுܯ = (3 ஼ܰ೔ − 3)݉௣݀. We can
see that when ஼ܰ೔ > 1 , the communication volume and
memory footprint of the hybrid parallel implementation will
be less than the implementation of pure MPI. In general, the
hybrid parallel implementation of the distributed ADMM
algorithm can effectively reduce the communication cost and
memory footprint, which achieves the reduction of the
convergence time and improving the scalability of the
distributed ADMM algorithm.

V. EXPERIMENTS

In this section, the corresponding experimental
comparisons are performed to evaluate the effectiveness of the
AH-ADMM algorithm. Our algorithm is compared with two
algorithms implemented by pure MPI, which are the
asynchronous ADMM algorithm (AD-ADMM) [6] and the
ADMM algorithm based on the hierarchical communication
structure (HAD-ADMM) [8]. These two algorithms have been
introduced in Section 2. All three algorithms use the dual
coordinate descent method to solve the sub-problems.

A. Experimental Environment and Implementation
The algorithms are tested on the cluster supercomputer

“Ziqiang 4000” of Shanghai University. We used 9 nodes
where each node has two intel E5-2690 CPU (2.9GHZ/8-core)
and 64GB RAM. One of the nodes is set as master, and the
rest are workers. All algorithms are implemented in C++ using
MPICH v3.9.5 and OpenMP v3.0. We consider two large
datasets: rcv1 and url. The specific information of the datasets
is shown in Table 3. Each dataset is divided into a training
dataset and a test dataset according to the ratio of 8:2. Besides,

567

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on February 20,2024 at 04:47:42 UTC from IEEE Xplore. Restrictions apply.

we randomly shuffle the data to different nodes to ensure that
class labels in the data are balanced.

TABLE III. SUMMARY OF THE DATASET.

Dataset l d Densitya

rcv1 677,399 47,236 0.155%

url 2,396,130 3,231,961 0.004%

a. Density is the average ratio of nonzero features per sample

We set the penalty parameter ߩ = 1, the partial barrierܵ = 4, and the bounded delay ߬ = 4. We use the dual residual ݎ௞ and the primal residual ݏ௞ as the stop criteria of these three
Algorithms. The definitions of ݎ and ݏ are shown in (14). If
(15) and (16) are established, the algorithm stops ௜௞ାଵݎ.[1] = ௜௞ାଵݔ − ௞ାଵݏ,௞ାଵݖ = ௞ାଵݖ)ߩ − .(௞ݖ (14)ቛ௥೔ೖశభቛమே ≤ ݀√ܵܤܣ + ܮܧܴ ×max ቄଵே ∑ ฮݔ௜௞ାଵฮଶ, ௞ାଵ‖ଶே௜ୀଵݖ‖ ቅ.

(15)

௞ାଵ‖ଶݏ‖ ≤ ܵܤܣ × √݀ + ܮܧܴ × ଵே ∑ ฮݕߩ௜௞ାଵฮଶே௜ୀଵ . (16)

Both the absolute error ܵܤܣ and the relative error ܴܮܧ are set
to 0.001.

B. Convergence Test
The training time vs. relative error is used to measure the

convergence rate of these three algorithms. The definition of
relative error ௥݂௘௥௥ is shown in (17).

௥݂௘௥௥ = (݂ − ௕݂௘௦௧)/ ௕݂௘௦௧ . (17)

Where ݂ represents the value of the loss function in the
current state and ௕݂௘௦௧ represents the minimum value of the
loss function obtained from all algorithms.

We tested the three algorithms with ஼ܰ = 65, ஼ܰ = 33,
and ஼ܰ = 17. For AD-ADMM and HAD-ADMM, ܲ = ஼ܰ೔
and ܶ = 1. For AH-ADMM, ܶ = ஼ܰ೔, and ܲ = 1. As shown
in Fig. 3, in the case of using the same number of cores, the
AH-ADMM algorithm has the fastest convergence rate. This
is because the AH-ADMM reduces the number of sub-
problems and solves only one sub-problem at each node,
which can reduce the synchronization overhead and
communication time. Besides, For the dataset of url, the
acceleration of the convergence rate is more obvious.

Compared with AD-ADMM, the convergence rate of AH-
ADMM can increase by 36.36 times when 65 cores are used.
However, for the dataset of rcv1, the convergence rate only
increases by 1.15-1.48 times. Furthermore, as Nେ౟ increases,
the AH-ADMM algorithm often becomes faster. This
observation confirms the importance of computing sub-
problems in parallel with using the advantages of multi-core.

C. Performance Test
1) Accuracy test: We tested the training time vs. accuracy

of the three algorithms to measure the performance. The
accuracy ܥܣ is defined as the ratio of the number of samples
correctly classified by the algorithm to the total number of
samples for a given test data set. The specific definition is
shown in (18). AC = ୬౨౟ౝ౞౪୬౪౥౪౗ౢ . (18)

Where n୰୧୥୦୲ represents the number of samples which are
predicted correctly and n୲୭୲ୟ୪ represents the total number of
testing samples.

As can be seen from Fig. 4, the AH-ADMM algorithm is
the fastest approach to achieve the best accuracy and will not
reduce the accuracy. On the other hand, it can be found that
for the AH-ADMM algorithm, the change of Nେ౟ does not
affect the best accuracy.

2) Training time analysis: We define the training time
includes computation time and communication time. The
computation time includes the optimization time of the sub-
problem, the communication time includes the time the
master waits to receive ݏ௜, and the time the master sent ݖ to
workers. We analyze the training time of the three algorithms
when they reach the same accuracy in Fig. 5. We can see that
the computation time of the AH-ADMM algorithm is longer
than the other two algorithms. This is because the
synchronization overhead among threads will slow down the
system in updating local variables with OpenMP. For smaller
datasets such as rcv1, the effect of this additional overhead is
more obvious. On the contrary, the AH-ADMM algorithm
has a satisfied performance in the reduction of
communication time. For AH-ADMM, the communication
cost can be reduced by up to 91.8% when ஼ܰ = 65 compared
with AD-ADMM. In general, the AH-ADMM algorithm can
achieve higher accuracy in a shorter time.

Fig. 3. Convergence comparisons between the three algorithms on the datasets: rcv1(a) and url(b).

568

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on February 20,2024 at 04:47:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Performance comparisons between the three algorithms on the datasets: rcv1(a) and url(b).

Fig. 5. The training time of the three algorithms on the datasets: rcv1(a) and url(b).

Fig. 6. Scalability of the three algorithms on the dataset: url(a) and kdd12(b).

D. Scalability Test
1) Speedup test: We tested the speedup of the three

algorithms to measure the scalability shown in Fig. 6(a). The
speedup ܵܲ is defined as (19).

ܵܲ = ௧(ଵ)௧(ே಴೔). (19)

Where (1)ݐ represents the training time when one core is used
by each node, ݐ(஼ܰ೔) represents the training time when ஼ܰ೔

569

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on February 20,2024 at 04:47:42 UTC from IEEE Xplore. Restrictions apply.

cores are used by each node. The training time refers to the
system time for the algorithm to reach the best accuracy.

It can be seen from Fig. 6(a) that the speedup of the other
two algorithms has increased as ஼ܰ೔ increases in addition to
the AD-ADMM. When ஼ܰ೔ = 8, the speed of the AH-ADMM
can be increased to 2.59 times. However, we also find that the
speedup does not increase linearly with ஼ܰ೔ and there is still a
large gap from the ideal speedup.

2) The test of the maximum number of cores available on
a single node: To verify the reduction in memory overhead
and the impact of memory footprint on the scalability, we
tested three algorithms for the maximum number of cores
available on a node.

We experimented with three algorithms on the big dataset
kdd12 of size about 20GB. The number of samples is
149,639,105 and the number of the features is 54,686,452. In
this experiment, we tested the training time vs. cores used by
each node when reaching the same accuracy. The results are
shown in Fig. 6(b). It can be found that when the number of
cores used by each node reaches 16, the AD-ADMM and the
HAD-ADMM cannot run anymore. This is where memory
limitations come into play. Although our hybrid approach can
use 16 cores to calculate simultaneously, there is no obvious
performance improvement compared to using 12 cores. The
synchronization overhead between threads limits the
scalability of the hybrid approach also.

E. Summary of Experiments
In this section, we show the test results of convergence rate,

performance and scalability of the three algorithms.
Compared with the AD-ADMM, the convergence rate of the
AH-ADMM can increase by 36.36 times when 65 cores are
used. Meanwhile, the AH-ADMM becomes much faster as the
number of cores used by each node increases, which proves
the effectiveness of using more cores to compute sub-
problems by multi-threading. It can be found that the main
reason for the decrease in training time is the reduction of
communication time which can be up to 91.8%. We measure
the scalability of the algorithm by the speedup and the
maximum number of cores available on a node. Although the
AH-ADMM algorithm has better scalability compared with
the other two algorithms, it has not reached our ideal due to
the synchronization overhead between threads in solving sub-
problems.

VI. CONCLUSION

In this paper, aiming at making full use of modern HPC
platforms with multicore nodes, we implement the hybrid
MPI/OpenMP parallelization of the distributed asynchronous
ADMM algorithm (AH-ADMM). As we know, it is the first
attempt at the ADMM algorithm implemented by the hybrid
MPI/OpenMP parallel programming model. Experiments
show that the AH-ADMM algorithm has the fastest
convergence rate and best scalability compared with the AD-
ADMM algorithm and the HAD-ADMM algorithm. However,
the scalability of the AH-ADMM algorithm still does not
achieve ideal efficiency. It may be due to the design of the
sub-problem optimization strategy. Therefore, we will
continue to study the efficient parallelization approaches of
the sub-problem in future work.

ACKNOWLEDGMENT

This research is supported in part by the National Natural
Science Foundation of China under grant No.U1811461 and
the High-Performance Computing Center of Shanghai
University.

REFERENCES

[1] S. Boyd, N. Parikh, E. Chu, “Distributed optimization and statistical
learning via the alternating direction method of multipliers,” Found.
Trends Mach. Learn. vol. 3, no. 1, pp. 1-122, April 2010.

[2] Y. Gu, J. Fan, L. Kong, S. Ma, H. Zou, “ADMM for high-dimensional
sparse penalized quantile regression,” Technometrics, vol. 60, no. 3, pp.
319-331, 2018.

[3] L. Guan, L. Qiao, D. Li, T. Sun, K. Ge, X. Lu, “An efficient ADMM-
based algorithm to nonconvex penalized support vector machines,” in
IEEE International Conference on Data Mining Workshops, 2018, pp.
1209-1216.

[4] S. Huang, C. Yang, “A hardware-efficient ADMM-based SVM
training algorithm for edge computing,” unpublished.

[5] L. Guan, T. Sun, L. Qiao, Z. Yang, D. Li, K. Ge, et al, “An efficient
parallel and distributed solution to nonconvex penalized linear SVMs,”
Frontiers of Information Technology & Electronic Engineering, vol. 21,
no. 4, pp. 587-603, 2020.

[6] R.Zhang, J.Kwok, “Asynchronous distributed ADMM for consensus
optimization,” in International conference on machine learning, 2014,
pp. 1701-1709.

[7] T. Chang, M. Hong, W. Liao, X. Wang, “Asynchronous distributed
ADMM for large-scale optimization—Part I: Algorithm and
convergence analysis,” IEEE Transactions on Signal Processing, vol.
64, no. 12, pp. 3118-3130, 2016.

[8] S. Wang, Y. Lei, “Fast communication structure for asynchronous
distributed ADMM under unbalance process arrival pattern,” in
International Conference on Artificial Neural Network, 2018, pp. 362-
371.

[9] D. Wang, Y. Lei, “Asynchronous Distributed ADMM for Learning
with Large-Scale and High-Dimensional Sparse Data Set,” in
International Conference on Advanced Hybrid Information Processing,
2019, pp. 259-274.

[10] J. Xie, Y. Lei, “ADMMLIB: A library of communication-efficient AD-
ADMM for distributed machine learning,” in IFIP International
Conference on Network and Parallel Computing, 2019, pp. 322-326.

[11] H. Jin, D. Jespersen, P. Mehrotra, R. B, L. H, B. C, “High performance
computing using MPI and OpenMP on multi-core parallel systems,”
Parallel Computing, vol. 37, no. 9, pp. 562-575, 2011.

[12] R. Rabenseifner, G. Hager, G. Jost, “Hybrid MPI/OpenMP parallel
programming on clusters of multi-core SMP nodes” in 17th Euromicro
international conference on parallel, distributed and network-based
processing, 2009, pp. 427-436.

[13] W. Kwedlo, P. Czochanski, “A Hybrid MPI/OpenMP Parallelization
of K-Means Algorithms Accelerated Using the Triangle Inequality,”
IEEE Access, vol.7, pp. 42280-42297, 2019.

[14] S. Pal, T. Xu, T. Yang, S. Rajasekaran, J. Bi, “Hybrid-DCA: A double
asynchronous approach for stochastic dual coordinate ascent,” Journal
of parallel and distributed computing, vol. 143, pp. 47-66, 2020.

[15] V. Mironov, A. Moskovsky, M. D’Mello, Y.Alexeev, “An efficient
MPI/OpenMP parallelization of the Hartree–Fock–Roothaan method
for the first generation of Intel® Xeon Phi™ processor architecture,”
The International Journal of High Performance Computing
Applications, vol. 33, no.1, pp. 212-224, 2019.

[16] C. Zhang, H. Lee, K. Shin, “Efficient distributed linear classification
algorithms via the alternating direction method of multipliers” in
Artificial Intelligence and Statistics, 2012, pp. 1398-1406.

[17] C. Hsieh, K. Chang, C. Lin, S. Sathiya, S. Sundararajan, “A dual
coordinate descent method for large-scale linear SVM” in Proceedings
of the 25th international conference on Machine learning, 2008, pp.
408-415.

[18] W. Chiang, M. Lee, C. Lin, “Parallel dual coordinate descent method
for large-scale linear classification in multi-core environments” in
Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2016, pp. 1485-1494.

570

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on February 20,2024 at 04:47:42 UTC from IEEE Xplore. Restrictions apply.

