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ABSTRACT
Among distributed machine learning algorithms, the global con-
sensus alternating direction method of multipliers (ADMM) has
attracted much attention because it can effectively solve large-
scale optimization problems. However, the high communication
cost slows its convergence and limits scalability. To solve the prob-
lem, we propose a hierarchical grouping ADMM algorithm (PSRA-
HGADMM) with a novel Ring-Allreduce communication model
in this paper. Firstly, we optimize the parameter exchange of the
ADMM algorithm and implement the global consensus ADMM al-
gorithm in the decentralized architecture. Secondly, to improve the
communication efficiency of the distributed system, we propose a
novel Ring-Allreduce communication model (PSR-Allreduce) based
on the idea of parameter server architecture. Finally, a Worker-
Leader-Group generator (WLG ) framework is designed to solve the
problem of inconsistency of cluster nodes. This framework com-
bines hierarchical parameter aggregation and adopts the grouping
strategy to improve the scalability of the distributed system. Exper-
iments show that PSRA-HGADMM has better convergence perfor-
mance and better scalability than ADMMLib and AD-ADMM. Com-
pared with ADMMLib, the overall communication cost of PSRA-
HGADMM is reduced by 32%.

CCS CONCEPTS
• Computing algorithms → Parallel and Distributed Algo-
rithms; • Architecture → Parallel Computer Architecture
and Accelerator Designs.

KEYWORDS
The global consensus ADMM algorithm, Ring Allreduce, Hierar-
chical grouping strategy, Worker-Leader-Group generator (WLG )
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1 INTRODUCTION
In recent years, machine learning (ML) has achieved remarkable
progress in various fields such as computer vision [18], game de-
velopment [16], smart healthcare [24], machine translation [10],
speech processing [1], etc. However, the reason for this success
is the increasing size of the ML models [17] and the exponential
explosion of training data [7] as well as breakthroughs in the per-
formance of programmable highly parallel hardware [25]. When
facing growing model parameters and training data, it is impractical
to train a model with a large number of parameters on a single
device. Therefore, it is necessary to optimally train ML models
in clusters with new parallel and distributed training algorithms.
Distributed optimization problems aim to solve the following con-
sistency problems:

min
𝑥

𝑁∑︁
𝑖=1

𝑓𝑖 (𝑥) + 𝑔(𝑥) (1)

This is a distributed machine learning model defined on 𝑁 workers,
where 𝑥 ∈ R𝑑 represents the model parameters, 𝑑 is the number
of features of samples, and 𝑓𝑖 : R𝑑 → R is a loss function that
needs to be calculated by 𝑖-th worker, 𝑔 : R𝑑 → R

⋃{∞} is the
regularization term.

The distributed optimization algorithm is an important research
direction in distributionmachine learning. The alternating direction
method of multipliers (ADMM) [2] algorithm is an optimization
algorithm that effectively solves large-scale machine learning prob-
lems. The ADMM algorithm decomposes a large global problem
into several local sub-problems by decomposing the coordination
process, and the solution to the global problem is obtained by coordi-
nating the solutions of the sub-problems, so the distributed ADMM
algorithm is also called the global consensus ADMM algorithm.
Nonetheless, because distributed machine learning uses massive
data to train high-dimensional and complex models, the efficiency
of the ADMM algorithm and the accuracy of the final model are
limited by unbalanced data load, limited cluster communication,
and high model complexity.

In this paper, to reduce the communication overhead of the
global consensus ADMM algorithm in a distributed system and
improve the scalability of the global consensus ADMM algorithm,
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we propose PSRA-HGADMMbased on the global consensus ADMM
algorithm. Furthermore, a novel Ring Allreduce communication
model is designed to improve the efficiency of parameter exchange.
The main contributions of this paper are as follows:

• By analyzing the parameter exchange process of the global
consensus ADMM algorithm and the characteristics of the
Ring Allreduce [5] algorithm, we combine the parameter
exchange idea of the parameter server (PS) [12] and propose
a parameter aggregation algorithm PSRA-ADMM for the
global consensus ADMMalgorithm based on data parallelism
[11].

• In order to further speed up the synchronization of global
variables, this paper proposes theWorker-Leader-Group gen-
erator (WLG) framework combined with the PSRA-ADMM
algorithm. This framework combines the parameter hierar-
chical aggregation strategy with the dynamic group commu-
nication strategy to solve the problem of stragglers in the
cluster.

• We evaluate the performance of PSRA-HGADMM with pub-
lic data sets on the Tianhe-2 supercomputing platform. Ex-
perimental results prove that our PSRA-HGADMM algo-
rithm has better convergence speed and accuracy and has
obvious scalability.

The remainder of the paper is as follows. Section 2 expounds
on the necessary background knowledge of the global consensus
ADMM. Section 3 introduces the related research work on the
distributed ADMM algorithm in recent years on communication
optimization. We analyze the design ideas and implementation prin-
ciples of the PSRA-HGADMM algorithm in Section 4. Section 5 is
about the experimental analysis of the PSRA-HGADMM algorithm
and verifies the superiority of the algorithm.We conclude this paper
and discuss future work in Section 6.

2 BACKGROUND
The global consensus ADMM algorithm can convert the distributed
optimization problem in (1) into a global consensus optimization
problem as follows:

min
𝑥𝑖 ,𝑧

𝑁∑︁
𝑖=1

𝑓𝑖 (𝑥𝑖 ) + 𝑔(𝑧) 𝑠 .𝑡 . 𝑥𝑖 = 𝑧, 𝑖 = 1, ..., 𝑁 . (2)

where 𝑥𝑖 ∈ R𝑑 represents the local variable to be optimized, 𝑧 ∈ R𝑑
represents the global variable. The augmented Lagrangian function
(𝐿𝜌 ) for (2) can be deduced as shown in (3).

𝐿𝜌 (𝑥, 𝑧,𝑦) =
𝑁∑︁
𝑖=1

𝑓𝑖 (𝑥𝑖 )+
𝑁∑︁
𝑖=1

𝑦𝑇𝑖 (𝑥𝑖−𝑧)+
𝜌

2

𝑁∑︁
𝑖=1

∥ 𝑥𝑖−𝑧 ∥22 +𝑔(𝑧) (3)

where 𝑦𝑖 ∈ R𝑑 is the dual variable , 𝜌 is the penalty parameter,
𝜌
2
∑𝑁
𝑖=1 ∥ 𝑥𝑖 − 𝑧 ∥22 is the quadratic penalty term introduced in

the augmented Lagrangian function, the purpose is to relax the
restriction that the objective function must be strongly convex.
The update formulas of the global consensus ADMM algorithm are
shown in (4)-(6).

𝑥𝑘+1𝑖 = min
𝑥𝑖

(𝑓𝑖 (𝑥𝑖 ) + 𝑥𝑇𝑖 𝑦
𝑘
𝑖 + 𝜌

2
∥ 𝑥𝑖 − 𝑧𝑘 ∥22) (4)

𝑧𝑘+1 = min
𝑧

(𝑔(𝑧) − 𝑧𝑇
𝑁∑︁
𝑖=1

𝑦𝑘𝑖 + 𝜌

2

𝑁∑︁
𝑖=1

∥ 𝑥𝑘+1𝑖 − 𝑧 ∥22) (5)

𝑦𝑘+1𝑖 = 𝑦𝑘𝑖 + 𝜌 (𝑥𝑘+1𝑖 − 𝑧𝑘+1) (6)

The sub-problem-solving process of the global consensus ADMM
algorithm can be solved in parallel, and synchronization is required
when calculating the global solution. The synchronization process
requires synchronization parameters between nodes. When the
nodes are out of step, the fast nodes need to wait for the slow
nodes. The communication cost will seriously affect the conver-
gence rate of the algorithm, making it difficult for the algorithm
to expand to a larger cluster size. In order to solve this problem,
many solutions have been proposed in recent years, such as thresh-
old method, parameter quantization, and communication topology
redesign to reduce communication costs. Unfortunately, while re-
ducing communication costs, some parameters are often filtered or
data accuracy is expressed with single precision, resulting in a de-
crease in the accuracy of the model trained by the global consensus
ADMM algorithm. Therefore, when the cluster scale continues to
expand, how to reduce the communication overhead of the global
consensus ADMM algorithm and ensure that the accuracy of the
algorithm does not decrease is the concern of this paper.

3 RELATEDWORK
To achieve a balance between computation and communication,
Weiyu Li et al. proposed COLA-ADMM [13]. They reduced commu-
nication costs by using communication thresholds to control param-
eter exchange betweenworkers. Q-GADMM[4] is a communication-
efficient ADMM algorithm based on the idea of communication
quantization. Each worker in Q-GADMM only communicates with
two neighbors and quantifies the parameters before communica-
tion, which effectively reduces the communication cost. Similarly,
SCCD-ADMM [19] is based on the random distribution network of
importance sampling, which can effectively reduce the total com-
munication time and calculation time in the decentralized network.
Due to the limited communication resources in the decentralized
consistency model, inter-nodes compete for limited communication
resources, resulting in slower convergence. GADMM [3] communi-
cates with workers in groups to alleviate the problem of communi-
cation bottlenecks. Based on GADMM, GR-ADMM [9] uses the ring
Allreduce communication strategy in inter-group communication
to reduce communication costs in distributed systems.

Based on the SSP computing model [8], Ruiliang Zhang et al.
[26] proposed an asynchronous ADMM (AD-ADMM) algorithm
with partial barriers and bounded delays. However, AD-ADMM
is not scalable due to the high communication overhead in the
master-worker architecture. ADMMLib [22] utilizes a hierarchical
communication architecture to integrate Ring AllReduce andmixed-
precision training, which further effectively reduces the communi-
cation cost between nodes. On the other hand, the performance of
ADMM is very sensitive to penalty parameters, and it is difficult for
non-professional users to choose an appropriate penalty parameter.
Zheng Xu [23] et al. proposed the Adaptive ADMM (AADMM)
algorithm, which can adaptively adjust the penalty parameters to
achieve fast convergence. HSAC-ALADMM [21] uses a delayed
aggregation parameters communication strategy which reduces the
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overhead of workers per iteration. Moreover, a sparse Allreduce
communication mode is customized for sparse data, and the param-
eters that need to be transmitted are segmented and aggregated.

AlthoughADMMLib [22] uses hierarchical communication strate-
gies under the decentralized communication topology, the appli-
cation scenario of ADMMLib is to solve the problem of stragglers
in the cluster through a limited asynchronous method. Unfortu-
nately, ADMMLib does not achieve a good balance between work-
ers’ synchronization and algorithm accuracy. Therefore, this paper
proposes an efficient parameter aggregation algorithm for the pa-
rameter aggregation characteristics of the global consensus ADMM
algorithm. The parameter aggregation strategy combined with hier-
archical grouping can effectively reduce communication overhead
and speed up the convergence of the algorithm. It achieves a bet-
ter balance between cluster node synchronization and algorithm
accuracy, proving its effectiveness in high-performance clusters.

4 PROPOSED ALGORITHM: PSRA-HGADMM
In this section, by analyzing the communication parameter aggre-
gation characteristics of the global consensus ADMM algorithm, a
novel Ring Allreduce parameter aggregation model (PSR-Allreduce)
based on the parameter server architecture is proposed. It is used to
efficiently utilize the computing resources and bandwidth resources
of the cluster, and on this basis, the global consensus ADMM algo-
rithm of hierarchical grouping is implemented.

4.1 Problem formulation
The parameter exchange mode of the global consensus ADMM is
the master-worker communication mode. In the master-worker
communication mode, the worker sends 𝑥𝑖 and 𝑦𝑖 to the master and
receives 𝑧 from the master, so the communication load is mainly
concentrated on the master, and the generated communication cost
becomes the system performance bottleneck. In contrast, although
the decentralized ADMM algorithm converges slowly, it can make
full use of the network resources of the cluster.

To change the communication mode of the global consensus
ADMM, it is necessary to transform the computing process of the
ADMM algorithm, and change the update formula of the global
variable 𝑧 as follows:

𝑧𝑘+1 = min
𝑧

(𝑔(𝑧) − 𝑧𝑇
𝑁∑︁
𝑖=1

𝑦𝑘𝑖 + 𝜌

2

𝑁∑︁
𝑖=1

∥ 𝑥𝑘+1𝑖 − 𝑧 ∥22)

= min
𝑧

(𝑔(𝑧) + 𝜌

2
∥ 𝑧 ∥22 −𝑧

𝑇
𝑁∑︁
𝑖=1

(𝑦𝑘𝑖 + 𝜌𝑥𝑘+1𝑖 ))

(7)

Introducing new variables𝑤𝑖 and𝑊 , defined as follows:

𝑤𝑘+1
𝑖 = 𝑦𝑘𝑖 + 𝜌𝑥𝑘+1𝑖 (8)

𝑊 𝑘+1 =
𝑁∑︁
𝑖=1

𝑤𝑘+1
𝑖 (9)

The update formula for the global variable 𝑧 of the global consensus
ADMM algorithm can be transformed into:

𝑧𝑘+1 = min
𝑧

(𝑔(𝑧) + 𝜌

2
∥ 𝑧 ∥22 −𝑧

𝑇𝑊 𝑘+1) (10)

The calculation of 𝑧𝑘+1 depends on the cumulative sum of 𝑤𝑖 , so
each worker no longer sends 𝑥𝑖 and𝑦𝑖 separately, but directly sends
𝑤𝑘+1
𝑖

and receives𝑊 𝑘+1. From the update formula of 𝑧, it can be
seen that this is an Allreduce operation. An iterative process of the
global consensus ADMM in the Allreduce communication mode is
divided into five steps. The first step is that each worker updates 𝑥𝑖
according to the formula (4). The second step is that each worker
calculates 𝑤𝑖 according to the formula (8). In the third step, all
workers perform the Allreduce operation, to sum up𝑤𝑖 to obtain
𝑊 . The fourth step is that each worker updates 𝑧 according to the
formula (10). The last step is that all workers update 𝑦𝑖 according
to the formula (6).

The global consensus ADMM algorithm based on the Allreduce
communication mode requires an Allreduce operation for each
iteration, and the communication cost brought by the Allreduce
operation determines the efficiency of the global consensus ADMM
algorithm. Therefore, designing an efficient Allreduce communica-
tion algorithm that fully utilizes network bandwidth resources is
the key to reducing communication costs.

Figure 1: Schematic diagram of data block aggregation based
on Ring Allreduce, including the Scatter-Reduce stage and
the Allgather stage, 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 represents the data block split
by worker 𝑖, and the green block represents the aggregated
data block after one iteration, where 𝑁 = 3.

4.2 PSR-Allreduce design
The Ring Allreduce communication model is based on decentralized
network topology. All workers in the cluster are connected in a
logical ring. As shown in Figure. 1, Ring Allreduce divides Allreduce
into two stages: the Scatter-Reduce stage and the Allgather stage.
Each stage requires 𝑁 − 1 iterations, where 𝑁 is the number of
workers in the cluster, and the communication cost of each iteration
is given by the slowest worker determination in a unidirectional
loop.

In the sparse data storage format, it is assumed that the number of
non-zero elements in the data block owned by each worker is 𝑐 , the
time required to transmit a data element is 𝜃𝑠 = (𝑣𝑎𝑙𝑢𝑒 + 𝑖𝑛𝑑𝑒𝑥)/𝐵,
where 𝑣𝑎𝑙𝑢𝑒 is the byte size required to store the data element,
𝑖𝑛𝑑𝑒𝑥 is the byte size required to store the index, and 𝐵 is the
communication bandwidth. Since the communication content of
each iteration of the Ring Allreduce communication model is a data
block instead of the entire vector, the communication capability of
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Ring Allreduce will not be affected when the size of the transmitted
data blocks is the same, but it will be affected when the size of the
data blocks is different under sparse communication. Therefore, the
minimum communication cost of Ring Allreduce is that all non-
zero elements are evenly distributed in each data block, and the
maximum communication cost is that all non-zero elements are
concentrated in the same data block. The communication cost of
Ring Allreduce in the Scatter-Reduce stage is:

𝑐𝜃𝑠 (𝑁 − 1)
𝑁

≤𝑇𝑟𝑖𝑛𝑔−𝑠𝑟≤
𝑐𝑁𝜃𝑠 (𝑁 − 1)

2
(11)

The communication cost of Ring Allreduce in the Allgather stage
is:

𝑐𝜃𝑠 (𝑁 − 1)
𝑁

≤𝑇𝑟𝑖𝑛𝑔−𝑎𝑔≤𝑐𝑁𝜃𝑠 (𝑁 − 1) (12)

Then a Ring Allreduce communication cost is:
2𝑐𝜃𝑠 (𝑁 − 1)

𝑁
≤𝑇𝑟𝑖𝑛𝑔−𝑎𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒≤

3𝑐𝑁𝜃𝑠 (𝑁 − 1)
2

(13)

From (13), it can be seen that the difference between the best-case
and worst-case communication cost is almost 𝑁 2. Therefore, it is
necessary to design a new communication model that can reduce
the performance impact caused by the sparseness and density of
the data set and improve the robustness of cluster communication.

Inspired by the parameter server architecture, a communica-
tion model PSR-Allreduce is designed based on Ring Allreduce
for aggregation parameters in a decentralized topology architec-
ture. Like Ring Allreduce, PSR-Allreduce also includes the Scatter-
Reduce stage and the Allgather stage as shown in Figure. 2. The

Figure 2: Schematic diagram of data block aggregation based
on PSR-Allreduce, including the Scatter-Reduce stage and
the Allgather stage, 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 represents the data block split
by worker 𝑖, and the green block represents the aggregated
data block after one iteration, where 𝑁 = 3.

PSR-Allreduce divides the data block into 𝑁 blocks evenly accord-
ing to the number of workers, each block has a mark corresponding
to the worker rank, and each worker is responsible for maintain-
ing the corresponding data block. Different from Ring Allreduce,
PSR-Allreduce sends the divided data blocks to the corresponding
numbered workers in the Scatter-Reduce stage. After the Reduce-
Scatter stage, each worker has the final result of the corresponding

numbered data blocks. In the Allgather stage, the block of the final
result obtained by each worker is sent to other workers, and finally,
each worker has the final model parameter result.

Performance analysis of PSR-Allreduce under sparse communica-
tion. In the Scatter-Reduce stage, the best case is that the non-zero
elements of all workers are only distributed in the blocks managed
by themselves. At this time, the communication cost is the small-
est. The worst case is that the non-zero elements of all workers
are outside the blocks managed by themselves. At this time, the
communication cost is the largest. The communication cost of the
Scatter-Reduce stage is:

0≤𝑇𝑝𝑠𝑟−𝑠𝑟≤𝑐𝜃𝑠 (14)

For the Allgather stage, since the number of non-zero elements in
the result of the Scatter-Reduce stage is 𝑐≤𝐶≤𝑁𝑐 . Therefore, the
best case is that there are 𝑐

𝑁
non-zero elements in the data block

managed by each worker, then 𝐶 = 𝑐 , and the worst case is that
there are c non-zero elements in the data block managed by each
worker, then 𝐶 = 𝑁𝑐 . The communication cost of the Allgather
stage is:

𝑐𝜃𝑠 (𝑁 − 1)
𝑁

≤𝑇𝑝𝑠𝑟−𝑎𝑔≤𝑐𝜃𝑠 (𝑁 − 1) (15)

In the PSR-Allreduce model, the lowest communication overhead in
the Scatter-Reduce phase is exactly the highest communication cost
in the Allgather stage. At this time, all the non-zero elements of
each worker happen to be in the blocks managed by each worker. If
it is desired to minimize the total communication cost, the best case
is that the non-zero elements on each worker are evenly distributed
in each data block. In summary, the communication cost of the
PSR-Allreduce is as follows:

2𝑐𝜃𝑠 (𝑁 − 1)
𝑁

≤𝑇𝑝𝑠𝑟−𝑎𝑙𝑙𝑟𝑒𝑑𝑢𝑐𝑒≤𝑐𝑁𝜃𝑠 (16)

From the above calculation formula, it can be seen that the com-
munication cost of PSR-Allreduce is 𝑁 times higher than that in
the worst case. It can be said that the performance of the PSR-
Allreduce model is better than that of the Ring Allreduce model.
Therefore, based on the global consensus ADMM algorithm de-
scribed in Section 4.1, this paper proposes a PSR-Allreduce-based
ADMM algorithm (PSRA-ADMM), which aggregates the parameter
𝑤𝑖 during each iteration, and introduces the parameter update rules
in Section 4.1.

Even so, the basic communication operation of the PSR-Allreduce
is still the Allreduce communication mode, so the PSR-Allreduce re-
quires each worker to communicate. During the calculation process,
due to the different loads of each node in the cluster and the speed
difference between the bus bandwidth and the network bandwidth,
the nodes are out of step, resulting in a waste of computing re-
sources. Therefore, designing a communication model that ensures
the nodes in the cluster can quickly synchronize parameters is the
key to efficiently utilizing cluster computing resources.

4.3 Hierarchical grouping mode
4.3.1 Basic idea: Modern computers are usually configured with
multiple computing cores that share memory and bus bandwidth.
High-performance computing clusters are formed by connecting
a large number of multi-core computers through the network in-
frastructure. Since bus bandwidth is much higher than network
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bandwidth, communication within a node is faster than communi-
cation between nodes. Therefore, to fully utilize the bandwidth of
network devices at different levels during communication among
workers, this paper performs hierarchical communication on the
global variable𝑊 according to the communication mechanism of
the multi-core cluster and the characteristics of the PSRA-ADMM
algorithm.

In other words, all workers are grouped according to whether
they are in the same physical node. Workers in the same group
form a communication domain and elect a worker responsible
for communication between communication domains, which is
called the 𝐿𝑒𝑎𝑑𝑒𝑟 . On the other hand, in order to coordinate the
communication pace between nodes and improve the utilization
rate of cluster computing resources, different nodes are further
grouped for communication.

Figure 3: GeneratesGroups onBehalf of𝐿𝑒𝑎𝑑𝑒𝑟𝑠,the threshold
is set to 3.

4.3.2 Grouping strategy: In order to group physical nodes accord-
ing to the actual operation of the cluster, this paper uses a dynamic
grouping strategy and proposes a Group Generator (GG) for group
management. GG dynamically adjusts the grouping of cluster nodes
by setting the threshold value, and users can also set the threshold
value by themselves. GG has a group buffer queue GQ. Whenever
a 𝐿𝑒𝑎𝑑𝑒𝑟 reports to GG, the rank of the 𝐿𝑒𝑎𝑑𝑒𝑟 is pushed into GQ.
Within a given grouping threshold (set to 3 here), the 𝐿𝑒𝑎𝑑𝑒𝑟 report-
ing to GG will form a communication group, notify the 𝐿𝑒𝑎𝑑𝑒𝑟 in
the group to synchronize, and then enter the next grouping cycle.

As shown in Figure. 3, we consider 6 nodes, each node contains 3
workers, and each node elects a 𝐿𝑒𝑎𝑑𝑒𝑟 responsible for inter-node
communication. In the beginning, 𝐿𝑒𝑎𝑑𝑒𝑟0, 𝐿𝑒𝑎𝑑𝑒𝑟1, and 𝐿𝑒𝑎𝑑𝑒𝑟2

need to perform inter-node synchronization after completing lo-
cal iterations, and 𝐿𝑒𝑎𝑑𝑒𝑟 needs to send a request to GG, indi-
cated in 1○, 2○ and 3○. GQ saves the synchronization request of the
𝐿𝑒𝑎𝑑𝑒𝑟 , when the group threshold is reached ( 4○), GG generates a
group𝐺𝑖𝑛𝑡𝑒𝑟 : [0,1,2] ( 5○), and broadcasts the group information to
𝐿𝑒𝑎𝑑𝑒𝑟0, 𝐿𝑒𝑎𝑑𝑒𝑟1 and 𝐿𝑒𝑎𝑑𝑒𝑟2 ( 6○). GG is receiving synchroniza-
tion requests from 𝐿𝑒𝑎𝑑𝑒𝑟3, 𝐿𝑒𝑎𝑑𝑒𝑟4, and 𝐿𝑒𝑎𝑑𝑒𝑟5while performing
operations 4○, 5○ and 6○ simultaneously. When the grouping thresh-
old is reached ( 7○), GG generates group 𝐺𝑖𝑛𝑡𝑒𝑟 : [3,4,5] ( 8○), and
broadcasts grouping information to 𝐿𝑒𝑎𝑑𝑒𝑟3, 𝐿𝑒𝑎𝑑𝑒𝑟4, and 𝐿𝑒𝑎𝑑𝑒𝑟5
( 9○).

Figure 4: The Worker-Leader-Group generator framework

4.3.3 Implement PSRA-ADMMalgorithm based on hierarchical group-
ing model: In this part, a Worker-Leader-Group generator (WLG)
framework is designed based on the hierarchical grouping commu-
nication to implement the PSRA-ADMM algorithm. The underlying
communication of the WLG communication framework is imple-
mented based on MPICH [6]. The WLG framework is shown in
Figure. 4: the framework includes a GG and 𝑁 nodes. Each node
contains several workers to form a communication domain and
a 𝐿𝑒𝑎𝑑𝑒𝑟 is elected from the workers to be responsible for inter-
group communication. All 𝐿𝑒𝑎𝑑𝑒𝑟𝑠 generate groups between differ-
ent communication domains through GG. After the local iteration
is completed, the 𝐿𝑒𝑎𝑑𝑒𝑟 sends an inter-group synchronization re-
quest to the GG, and the GG regenerates the different ones. Since the
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inner 𝐿𝑒𝑎𝑑𝑒𝑟 is implemented based on Batch Synchronous Parallel
(BSP) [20], the inner communication uses blocking communication.
The PSRA-ADMM algorithm based on the hierarchical grouping
communication model (PSRA-HGADMM) includes four steps: (1)
After the cluster is initialized, workers in the same node form a
communication domain𝐺𝑖𝑛𝑡𝑟𝑎 , and a 𝑙𝑒𝑎𝑑𝑒𝑟 in the communication
domain is selected. (2) Workers in the same physical node calculate
𝑥𝑖 and𝑤𝑖 , and reduce to the 𝐿𝑒𝑎𝑑𝑒𝑟 in the same communication do-
main to generate𝑊 . At the same time, the 𝐿𝑒𝑎𝑑𝑒𝑟 sends a grouping
request to the GG, and the GG groups all physical nodes according
to the dynamic grouping strategy. (3) After the 𝐿𝑒𝑎𝑑𝑒𝑟 receives the
group information 𝐺𝑖𝑛𝑡𝑒𝑟 , it executes the PSR-Allreduce algorithm
to exchange the parameter in the group according to the𝐺𝑖𝑛𝑡𝑒𝑟 . (4)
The 𝐿𝑒𝑎𝑑𝑒𝑟 obtains the updated parameter and broadcasts it to all
workers in the 𝐺𝑖𝑛𝑡𝑟𝑎 , and starts the next round of computing iter-
ations. The above four steps are repeated until the stop condition
is reached. The whole algorithm is described in Algorithms 1-3.

Algorithm 1 The PSRA-HGADMM algorithm: the process of the
worker
1: for all workers [in parallel] do do
2: initialize: 𝑥𝑖 = 0, 𝑦𝑖 = 0, 𝑘 = 0
3: generating the 𝐺𝑖𝑛𝑡𝑟𝑎

4: select a worker as the 𝐿𝑒𝑎𝑑𝑒𝑟 in 𝐺𝑖𝑛𝑡𝑟𝑎

5: while 𝑘 < 𝑚𝑎𝑥_𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 do
6: 𝑘 = 𝑘 + 1
7: update 𝑥𝑖 by (4)
8: update𝑤𝑖 by (8)
9: do Allreduce operation to get𝑤 in the 𝐺𝑖𝑛𝑡𝑟𝑎

10: notify 𝐿𝑒𝑎𝑑𝑒𝑟 of finishing updating𝑊
11: wait until receiving global𝑊 from 𝐿𝑒𝑎𝑑𝑒𝑟

12: update 𝑧 by (10)
13: update 𝑦𝑖 by (6);
14: end while
15: end for

Algorithm 2 The PSRA-HGADMM algorithm: the process of the
group generator
1: initialize: GQ= N,𝐺𝑖𝑛𝑡𝑟𝑎=null, 𝐺𝑖𝑛𝑡𝑒𝑟=null, 𝑘=0, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑=3
2: repeat
3: for 𝑘 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do
4: 𝑘 = 𝑘 + 1
5: wait until receiving the report from 𝐿𝑒𝑎𝑑𝑒𝑟 𝑖

6: add 𝐿𝑒𝑎𝑑𝑒𝑟 𝑖 to GQ
7: end for
8: generate the 𝐺𝑖𝑛𝑡𝑒𝑟 from GQ
9: send 𝐺𝑖𝑛𝑡𝑒𝑟 to all 𝐿𝑒𝑎𝑑𝑒𝑟𝑠 in 𝐺𝑖𝑛𝑡𝑒𝑟

10: clear GQ
11: until terminal

Table 1: Summary of datasets

Datasets Dimension Training set Test set

news20 1355191 16000 3996
webspam 16609143 300000 50000

url 3231961 2000000 396130

Algorithm 3 The PSRA-HGADMM algorithm: the process of the
𝐿𝑒𝑎𝑑𝑒𝑟 𝑖

1: repeat
2: sends a report to the group generator
3: get 𝐺𝑖𝑛𝑡𝑒𝑟 from group generator
4: wait until receiving notice from the worker
5: do PSR-Allreduce to update𝑊 in 𝐺𝑖𝑛𝑡𝑒𝑟

6: broadcast𝑊 to all worker in 𝐺𝑖𝑛𝑡𝑟𝑎

7: until terminal

5 EXPERIMENTAL
5.1 Environment settings
The experimental platform in this paper is the Tianhe-2 super-
computer. The maximum number of physical nodes used in the
experiment is 32 nodes, and each node runs a maximum of 16 pro-
cesses. Each computing node contains 2 Intel Xeon E5-2692 v2 (12
core/ 2.2GHz) CPUs and 64GB of memory. The operating system
that each node runs is Red Hat Enterprise Linux Server release
6.5 (Santiago) with GCC/4.8.4 and MPICH/3.2 environments. The
nodes are connected through the self-developed high-speed inter-
net network TH2 Express-2+14 Gbps × 8lane. The above algorithms
are all implemented using C++ programming language, and the
communication between distributed cluster nodes is implemented
using the MPICH/3.2 communication library.

5.2 Baseline and benchmarks
In this section, we solve the logistic regression problem with L1
regularization using PSRA-HGADMM. The convergence, system
time, and accuracy of the PSRA-HGADMM algorithm are tested and
compared with ADMMLib and AD-ADMM introduced in Section 3.
The public data sets used in this experiment are news201, webspam2,
and url3. The detailed information on the data sets is shown in
Table 1.

In the experiments, we solve the logistic regression problemwith
L1 regularization as follows:

min
𝑥

𝑁∑︁
𝑖=1

log(1 + 𝑒−𝑏𝑖𝐷
𝑇
𝑖
𝑥 ) + 𝜆∥𝑥 ∥1 (17)

Where 𝑥∈𝑅𝑑 is model parameters,𝐷𝑖∈𝑅𝑑 is the 𝑖-𝑡ℎ training sample,
𝑏𝑖∈{−1, 1} represents the label of the 𝑖-𝑡ℎ sample, 𝜆 is the regular-
ization parameter and we set it to 1 in the experiment. We use the
trust region Newton methods (Tron) [14] to solve subproblems in
the global consensus ADMM. Since the computing model used by

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#news20
2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#webspam
3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#url
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Figure 5: Relative error of PSRA-HGADMM, ADMMLib, and AD-ADMM

ADMMLib and AD-ADMM are all SSP, it is necessary to set the two
hyperparameters of these algorithms,𝑀𝑖𝑛_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 and𝑀𝑎𝑥_𝑑𝑒𝑙𝑎𝑦.
In the following experiments, we set the 𝑀𝑖𝑛_𝑏𝑎𝑟𝑟𝑖𝑒𝑟 to half the
number of workers and the𝑀𝑎𝑥_𝑑𝑒𝑙𝑎𝑦 to 5.

5.3 Convergence
In this part, we test the convergence of PSRA-HGADMM, ADMM-
Lib, and AD-ADMM. The𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 in this experiment is set
to 100 times, and the group generator cache queue GQ of PSRA-
HGADMM is initialized to half the number of nodes, the number
of nodes used in the experiment is 8, and the number of workers
changes to 32, 64, 128, that is, the number of the workers in each
node is 4, 8, 16. The algorithm convergence is measured by the
relative target error expressed by equation (18).

𝑓𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑒𝑟𝑟𝑜𝑟 = |𝑓 ∗ − 𝑓 |/𝑓 (18)

Where 𝑓 represents the minimum value that the loss function in the
algorithm can take, and 𝑓 ∗ represents the value of the loss function
in the current state. The experimental results are shown in Figure. 5.

As shown in the convergence curve in Figure. 5, these three dif-
ferent ADMM algorithms gradually tend to be flat after the number
of iterations increases, but there are differences in the convergence
of these three different ADMM algorithms from the perspective of
convergence degree. It can be seen from Figure. 5 that the conver-
gence of PSRA-HGADMM has obvious advantages over the other
two ADMM algorithms, and this advantage becomes more obvi-
ous as the number of workers continues to increase. The reason is
that although PSRA-HGADMM and ADMMLib both use a hierar-
chical communication strategy, PSRA-HGADMM’s computational
model is a BSP computing model, while ADMMLib’s computing
model is SSP. The stragglers of the SSP computing model use stale
values as update parameters, so PSRA-HGADMM can achieve a
better convergence effect in fewer iterations. On the other hand,
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Figure 6: System time and accuracy of various algorithms for different numbers of nodes

PSRA-HGADMM uses the proposed PSR-Allreduce communica-
tion model in parameter exchange, while ADMMLib uses the Ring
Allreduce communication model. Theoretically, the communica-
tion overhead of the PSR-Allreduce communication model is less
than that of Ring Allreduce, so this experiment also proves that
the PSR-Allreduce communication model has more advantages in
distributed ADMM. In terms of implementation, PSRA-HGADMM
uses a decentralized communication topology, while AD-ADMM
uses a master-worker structure, and the computing model is limited
by the communication bandwidth of the master node. Therefore,
it can be seen from Figure. 5 that the scalability and convergence
rate of PSRA-HGADMM is better than AD-ADMM.

In summary, the experimental results show that PSRA-HGADMM
based on the WLG framework is better than ADMMLib and AD-
ADMM in convergence in theory and experiment, and shows better
scalability.

5.4 System time
To prove the effectiveness of our proposed WLG framework, in this
part, we test the system time of PSRA-HGADMM and the accuracy
of the algorithm on the data set news20, webspam, and url. In the
experiment, the number of nodes in the cluster is 4, 8, 16, and 32
respectively, and the corresponding number of workers is 16, 32,
64, and 128. The number of iterations in the experiment is 100.

The system time is defined here as the sum of the calculation
time (𝐶𝑎𝑙_𝑡𝑖𝑚𝑒) and the communication time (𝐶𝑜𝑚𝑚_𝑡𝑖𝑚𝑒). The
calculation time includes the time to update parameters 𝑥 , 𝑦, and
𝑊 , and the communication time includes the grouping request time
and the time to exchange parameter𝑊 between nodes. Accuracy is
the ratio between the number of samples and the total number of
test samples of the given test data classified correctly by the model
trained by the algorithm after each iteration. Experimental results
of system time and algorithm accuracy are shown in Figure. 6.

As can be seen from Figure. 6, with the increase in the number of
nodes, the communication time of PSRA-HGADMM decreases lin-
early, while that of ADMMLib remains basically unchanged, while
that of AD-ADMM increases continuously. Because the communi-
cation cost of the master node in the AD-ADMM increases with
the increase of the number of nodes, the communication cost of

the nodes in the ADMMLib is not affected by the cluster scale,
and PSRA-HGADMM based on the WLG framework can effectively
reduce the communication cost through the dynamic grouping strat-
egy. On the other hand, although PSRA-HGADMM and ADMMLib
use hierarchical communication, PSRA-HGADMM requires less
system time than ADMMLib as the number of nodes increases. The
system time required by PSRA-HGADMM is reduced by 28.3% on
news20, 63.18% on webspam, and 60.4% on url, which indicates that
the PSR-Allreduce communication model on distributed ADMM
algorithm has better performance than the normal Ring Allreduce.

Figure. 5 and Figure. 6 show that PSRA-HGADMM has higher
accuracy and lower objective error after 100 iterations, which in-
dicates that PSRA-HGADMM has significant global convergence.
With the expansion of the cluster scale, the number of data sam-
ples processed by each worker node will become smaller, so it can
be found from Figure. 6 that the accuracy of the three algorithms
decreases, but the accuracy of PSRA-HGADMM decreases the least.
When the number of nodes increases from 4 to 32, the accuracy of
PSRA-HGADMMdecreases by 3.23% on news20, 0.57% on webspam,
and 0.59% on url. This shows that the accuracy of PSRA-HGADMM
does not decrease with the expansion of cluster size, because the
BSP computing model used by PSRA-HGADMM can ensure that
the parameters can be updated synchronously, so the scalability of
PSRA-HGADMM is better than that of ADMMLib and AD-ADMM.

Therefore, based on the above analysis, the system time of PSRA-
HGADMM decreases with the expansion of cluster scale and main-
tains a high precision. It is proved that PSRA-HGADMM has better
advantages in system time and precision, and has better scalability
in solving large-scale computing problems.

5.5 Performance of dynamic grouping strategy
To solve the problem of stragglers in a cluster, PSRA-HGADMM
uses a strategy of dynamic grouping. In order to be able to test the
advantages of the dynamic grouping strategy, inspired by [15], we
randomly select nodes and prolong their computation time during
computing to simulate the phenomenon that nodes are out of step
in a cluster. In the experiment, the number of nodes in the cluster is
4, 8, 16, and 32 respectively, the corresponding number of workers
is 16, 32, 64, and 128, and the number of iterations of the experiment

89



PSRA-HGADMM: A Communication Efficient Distributed ADMM Algorithm ICPP 2023, August 07–10, 2023, Salt Lake City, UT, USA

Figure 7: Performance of Dynamic Grouping Strategy

is 100. Here, the system time is defined as the sum of the calculation
time (𝐶𝑎𝑙_𝑡𝑖𝑚𝑒) and the communication time (𝐶𝑜𝑚𝑚_𝑡𝑖𝑚𝑒). The
experimental results are shown in Figure. 7.

As can be seen from Figure. 7, when the number of nodes is 4,
there is little difference between the system time of the dynamic
grouping strategy and that of the ungrouped. On high dimensional
data sets such as webspam and url, the ungrouped system time
is even less than the dynamic grouping strategy time. This is be-
cause the number of nodes is small and the synchronization waits
time of nodes is small. On the other hand, the PSRA-HGADMM
which uses the dynamic grouping strategy consumes time on node
grouping and increases the system time. Therefore, the advantage
of PSRA-HGADMM which uses the dynamic grouping strategy is
not obvious. Despite this, when the number of nodes increases from
4 to 32, the communication time required by PSRA-HGADMMwith
dynamic grouping strategy decreases significantly, while the com-
munication time required by PSRA-HGADMM without dynamic
grouping increases. For example, the communication time of PSRA-
HGADMM with dynamic grouping strategy is reduced by 62% on
webspam, while the communication time of PSRA-HGADMMwith-
out dynamic grouping strategy is increased by 36% on webspam.
The reason for our analysis is that PSRA-HGADMM avoids too
long communication time by dynamically modifying the grouping,
and the advantage of the dynamic grouping strategy becomes more
obvious with the increasing number of nodes.

Through the above experiments, we can see that the dynamic
grouping strategy can effectively solve the problem of the inconsis-
tent step of the nodes in the cluster and reduce the waiting time
required for global synchronization of the BSP computing model.
PSRA-HGADMM not only guarantees the accuracy of the algo-
rithm but also has better scalability, which proves that it has great
advantages in solving large-scale computing problems.

6 CONCLUSION AND FUTUREWORK
In order to reduce the communication cost and improve the scalabil-
ity of the global consensus ADMM algorithm, this paper proposes a
hierarchical grouping ADMM algorithm (PSRA-HGADMM) based
on a novel Ring Allreduce communication model (PSR-Allreduce).
PSRA-HGADMM reduces the system time and ensures the scalabil-
ity of the algorithm through three methods: The first is to introduce

new parameter variables𝑊 in the global consensus ADMM algo-
rithm so that the global consensus ADMM algorithm can be imple-
mented on a decentralized architecture. The second is to optimize
the parameter exchange process of Ring Allreduce based on the
parameter server architecture and propose the PS Ring Allreduce
(PSR-Allreduce) communication model to improve the utilization
rate of cluster bandwidth under the condition of sparse data. The
third is to design theWorker-Leader-Group generator (WLG) frame-
work, which solves the problem of inconsistent computing nodes in
the cluster and speeds up the convergence rate of PSRA-HGADMM.
Experiments for logistic regression with L1 regularization show
that PSRA-HGADMM can converge faster with less communication
time than AMMLib and AD-ADMM, and the dynamic grouping
strategy shows better advantages. A limitation lies in that the dy-
namic grouping strategy consumes a lot of system time when the
number of nodes is relatively small. In future work, we will focus
on optimizing the dynamic grouping strategy to reduce the cost of
system time.
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