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Abstract—The distributed alternating direction method of mul-
tipliers (ADMM) is an effective algorithm to solve large-scale op-
timization problems. However, there are still massive computation
and communication cost in distributed ADMM when processing
high-dimensional data. To solve this problem, we propose a
distributed ADMM with sparse computation and Allreduce com-
munication (SCAC-ADMM) which can process high-dimensional
data effectively. In the algorithm, each node optimizes a sub-
model of the target model in parallel. Then, the target model
is obtained by aggregating all sub-models. The features in the
sub-model are named associated features. In SCAC-ADMM, we
first design a selecting method of associated features to determine
the composition of each sub-model. This method can limit the
dimension of the sub-model by setting appropriate parameters,
so as to limit the computation cost. Secondly, to reduce the
communication traffic caused by transmitting high-dimensional
parameters, we propose a novel Allreduce communication model
which can only aggregate associated parameters in sub-models.
Experiments on high-dimensional datasets show that SCAC-
ADMM has less computation cost and higher communication
efficiency than traditional distributed ADMM. When solving
large-scale logistic regression problem, SCAC-ADMM can reduce
the system time by 73% compared with traditional distributed
ADMM.

Index Terms—distributed ADMM algorithm, sparse computa-
tion, allreduce communication, SCAC-ADMM

I. INTRODUCTION

The distributed alternating direction method of multipliers

(ADMM) [1], as an effective distributed optimization algo-

rithm, is widely used to solve large-scale machine learn-

ing problems, such as Linear regression [2], Support vector

machine [3], and many others. In the distributed ADMM

algorithm, the original problem is decomposed into several

sub-problems which can be solved in parallel, and then the

solution of the original problem is obtained by coordinating

the solutions of the sub-problems. In the scenario of data

parallelism [4], the distributed ADMM algorithm aims to solve

the following distributed optimization problem:

min
x

∑P

i=1
fi (x) . (1)

where the objective function is divided into P parts, fi : R
d →

R is local objective function, x ∈ Rd represents the global

variable to be optimized, d is the number of features.

With the rapid growth of data dimensions, the distributed

ADMM algorithm encounters the following problems when

dealing with high-dimensional data: (1) When optimizing

sub-problems, other optimization algorithms is needed, such

as L-BFGS [5], trust region Newton method [6]. In these

iterative optimization processes, processing high-dimensional

training data will cause massive computational overhead. (2) In

distributed ADMM, communication between nodes is needed

to aggregate the parameters at each iteration. Transmitting

high-dimensional model will result in large amount of traffic

in network. These two problems affect the efficiency of

distributed ADMM. Therefore, in this paper, we try to reduce

the computation and communication overhead of distributed

ADMM for processing high-dimensional data.

At present, many studies have been carried out to improve

the efficiency of distributed ADMM algorithms from the

aspects of computation and communication. For computational

optimization, linearized ADMM [7] and stochastic ADMM

[8] reduced the computation overhead of a single iteration

by reducing the computational complexity of solving the sub-

problems. The convergence speed of the ADMM algorithm

is affected by the penalty parameter, so the author of [9]

designed a distributed ADMM algorithm with dynamic penalty

parameter to accelerate the convergence speed of algorithm. In

terms of communication optimization, the algorithms proposed

in [10] and [11] reduced the communication cost based on

quantized communication and communication censoring. In

[12], an asynchronous distributed ADMM was proposed to

reduce the synchronous waiting time.
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However, the above studies improve computation and com-

munication separately, and the optimization and the trans-

mission of model are based on full model. To improve the

efficiency of solving high-dimensional problems, the opti-

mization on both computation and communication need to

be considered. For high-dimensional problems, the author of

[1] proposed a general form consensus optimization. In this

optimization, each process only optimizes a sub-model in

parallel, and the target model is obtained by aggregating these

sub-models. The features in sub-model are named associated

features, which are associated with some features in target

model. Under this mode, each node only needs to optimize a

smaller sub-model instead of full model, so the computation

cost can be reduced. And aggregating only sub-models can

also reduce the communication cost. Therefore, the general

form consensus optimization is more suitable for processing

high-dimensional data.

In this paper, in order to improve the optimization speed

of distributed ADMM for processing high-dimensional data,

based on general form consensus optimization, we pro-

pose a distributed ADMM based on sparse computation

and Allreduce communication (SCAC-ADMM). In SCAC-

ADMM, only associated features are optimized, which are

determined according to selecting method. Moreover, a novel

Allreduce communication model is designed to aggregate these

associated features effectively. The contributions of this paper

are as follows:

• We design a selecting method of associated features,

which determines the composition of sub-models. This

method is based on the number of non-zero elements in

each dimension of dataset. By setting the hyperparameter

in this method, the dimension of the sub-model can be

limited, so as to limit the computation cost.

• To reduce communication traffic when transmitting high-

dimensional data, an novel Allreduce communication

model is proposed in this paper, which can only transmit

the data on associated features instead of the full model.

• We evaluate the performance of SCAC-ADMM with

high-dimensional datasets on the Tianhe-2 supercom-

puting platform. The experiments show that SCAC-

ADMM has less computation and communication cost

than traditional distributed ADMM when processing

high-dimensional data.

The rest of this paper is organized as follows. Section

II introduces the relevant background. In Section III, we

describe the design of SCAC-ADMM. Experiments results are

explained in Section IV. Section V concludes this paper and

gives the future work.

II. BACKGROUND

A. Global Consensus ADMM Algorithm

In [1], the distributed optimization problem in (1) was

converted into a global consensus optimization problem as

follow:

min
xi

∑P

i=1
fi (xi) + g(z) s.t. xi = z, i = 1, . . . , P. (2)

where xi ∈ Rd represents the local variable to be optimized,

z ∈ Rd represents the global variable, g : Rd → R ∪ {∞} is

the regularization function. The equality constraint is used to

control the difference of xi through the global variable z, so

that they can close to each other and finally achieve the global

consensus.

Global consensus ADMM (GC-ADMM) starts from con-

structing the augmented Lagrangian Lρ of (2). Then, the Lρ is

minimized by updating xi and z alternately. The expression of

Lρ is shown in (3). And the iterative formulas of GC-ADMM

are shown in (4)-(6).

Lρ ({xi} , z, {yi}) =
∑P

i=1

(
fi (xi) +

ρ
2 ‖xi +

yi

ρ −
z‖22

)
+ g(z).

(3)

xk+1
i = argmin

xi

(
fi (xi) +

ρ

2

∥∥∥∥xi +
yki
ρ

− zk
∥∥∥∥
2

2

)
. (4)

zk+1 = argmin
z

(
g(z) +

ρ

2

∑P

i=1

∥∥∥∥xk+1
i +

yki
ρ

− z

∥∥∥∥
2

2

)
.

(5)

yk+1
i = yki + ρ

(
xk+1
i − zk+1

)
. (6)

where y ∈ Rd represents dual variable, ρ represents the

penalty parameter. The execution of GC-ADMM consists of

following steps: first, local variable xi is updated in each node

in parallel, than xi and dual variables yi are aggregated to

calculate global variable z, finally each node updates the yi in

parallel. The update of variables is performed iteratively until

the stopping criterion is satisfied.

B. General Form Consensus Optimization

Since GC-ADMM does not consider the characteristics of

the data, when processing high-dimensional sparse data in GC-

ADMM, each node needs to optimize and transmit the whole

high-dimensional model in each iteration, resulting in massive

computation and communication overhead. In this case, the

GC-ADMM cannot efficiently optimize the model with high-

dimensional data. Therefore, the author of [1] convert problem

(1) to general form consensus optimization shown in (7).

min
xi

∑P

i=1
fi (xi) + g(z) s.t. xi = zRi

, i = 1, . . . , P. (7)

where xi ∈ Rdi is local variable, and the features in xi

are named associated features, which are associated to some

features in z. zRi
∈ Rdi is the corresponding part of the xi in

the z. The relationship of local variable and global variable is

shown in Fig. 1.

In general form consensus optimization, only associated

features need to be optimized in each node. But how to

determine the associated features in each node is a problem.

To further reduce the computation cost, we design a selecting

method of associated features based on the number of non-zero

elements in each dimension of dataset, which is introduced in

Section III-A.
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Fig. 1. The relationship between local variable and global variable. Edges
represent the association of them.

C. Communication model in Distributed ADMM

In fully connected communication network, the distributed

ADMM is mainly implemented based on two network topolo-

gies, the parameter server [13] and Allreduce model. The

server nodes and worker nodes in parameter server make com-

munication more flexible, but the server nodes are dedicated

to aggregate parameters, which leads to a waste of computing

resource. Besides, when aggregating high-dimensional param-

eters, saving these parameters will also result in huge memory

overload in server nodes. In Allreduce model, the status of

each node is same, and the communication load between nodes

is balanced, which can make full use of computing resource

and communication bandwidth.

Among the studies about general form consensus ADMM,

the author of [14] implemented the algorithm based on master-

slave mode in asynchronous manner. Although asynchronous

communication can reduce the waiting time of master node,

a single master node in network will limit the scalability

of algorithm. In [15], general form consensus ADMM is

implemented on parameter server with multiple server nodes,

but it has the disadvantages described above.

To obtain balanced communication, we design a novel Allre-

duce model based on the characteristic that only associated

features are optimized in general form consensus optimization.

This Allreduce model is introduced in Section III-C.

III. PROPOSED ALGORITHM: SCAC-ADMM

In SCAC-ADMM, each node first fetches the composition

of its sub-model according to the selecting method of associ-

ated features. Then, based on these features, the optimization

is performed according to the update rules we give. And

the communication in SCAC-ADMM based on the proposed

Allreduce model.

A. Selecting Method of Associated Features

The set of associated features in the i-th node is defined as

θ(i). The more features in θ(i) means the more computation

cost, but losing too many features will affect the final accuracy.

In the selecting method, θ(i) is determined by pre-analyzing

the i-th dataset. We consider that if a dimension is non-zero in

large number of training data, then this dimension is important,

while it can be ignored if it is non-zero in only several pieces

of data. Based on this idea, we proposed the selecting method.

By analysing the local dataset, nodes can get the importance of

each dimension of local dataset. And only the features whose

importance is greater than threshold will be add to feature set.

The process of selecting associated feature is shown in Fig. 2.

Fig. 2. The process of selecting associated features.

In this method, a matrix M ∈ RP×d is defined to build

the relationship between local variable (sub-model) and global

variable (full model), and each node only stores a row of M .

Assuming that Di is the training dataset assigned to the i-
th node, Mij denotes the number of non-zero elements on

the j-th dimension in Di. Each node counts the number of

non-zero elements in each dimension of local dataset and

saves them in M . The filter threshold τ is defined to select

associated features. If Mij >= τ , it indicates that j-th feature

is important, and it will be selected as an associated feature

in node i. At the same time, j will be added to θ(i), i will be

added to φ(j) which is a set including the nodes associated

with j-th dimension in z. The selecting method is summarized

in Algorithm 1.

Algorithm 1 Selecting method of associated features

1: for all nodes [in parallel] do
2: Initialize Mi = 0, τ
3: for data ∈ Di do
4: if dataj ! = 0 then
5: Mij = Mij + 1
6: end if
7: end for
8: if Mij >= τ then
9: add j to θ(i)

10: add i to φ(j)
11: end if
12: end for

The number of associated features in local variable is

limited by τ , which is set artificially. When the global variable

is high-dimensional, by setting appropriate filter threshold τ ,

we can limit the dimension of local variable, so as to limit the

computation cost.
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B. Update Rules

After determining the composition of each local variable,

the optimization procedure begins. In SCAC-ADMM, the

optimization consists of the update of local variable xi, global

variable z and dual variable yi. Since the different dimensions

of xi and yi in each node, it is hard to aggregate these

parameters based on Allreduce model. Therefore, we expand

the dimensions of xi and yi to the same as z. But each node

only updates the associated features in xi and yi, and the

calculation is performed in a sparse manner.Therefore, it is still

a general form consensus optimization. We name this approach

sparse computation.

According to definition of θ(i), zRi in (7) can be further

defined as zRi := {zj |j ∈ θ(i)}. Like the derivation in Section

II-A, we can get the iterative update rules of SCAC-ADMM

by solving (7). And the rules are shown in (8) - (10).

xk+1
i = argmin

xi

(fi (xi) +
ρ

2

∑
j∈θ(i)

∥∥∥∥∥xij +
ykij
ρ

− zkj

∥∥∥∥∥
2

). (8)

zk+1 = argmin
z

(g(z) +

d∑
j=1

∑
i∈φ(j)

ρ

2

∥∥∥∥∥xk+1
ij +

ykij
ρ

− zj

∥∥∥∥∥
2

).

(9)

yk+1
ij = ykij + ρ

(
xk+1
ij − zk+1

j

)
, ∀j ∈ θ(i). (10)

where the dimension of these variables is d, and the calculation

in fi(xi) is performed in a sparse manner. Note that the

update of the global variable needs to calculate xk+1
ij +

yk
ij

ρ ,

so we define it as wk+1
ij and transmit it as a whole to reduce

communication cost. The update rule of z is converted to (11).

zk+1 = argmin
z

(g(z) +

d∑
j=1

∑
i∈Φ(j)

ρ

2

∥∥wk+1
ij − zj

∥∥2). (11)

The update steps of variables are the same as described in

the GC-ADMM. In the next section, we introduce the proposed

Allreduce model, which is used to aggregate xi in each node

when updating z.

C. Allreduce Communication in SCAC-ADMM

Among the distributed ADMM implemented based on the

Allreduce model, most of them are implemented based on the

Ring-Allreduce [16]. In [17] and [18], the Ring-Allreduce is

used to implement asynchronous ADMM and decentralized

consensus ADMM, respectively.

In Ring-Allreduce, the data is divided into P blocks for

transmission, where P is the number of nodes in the network.

All the nodes are organized in a logistic ring. Ring-Allreduce

consists of two phases, Scatter-Reduce phase and Allgather

phase. The former aggregates data blocks to one node, and

the latter allows all nodes to own the aggregated data. The

communication process of aggregating data blocks is shown

in Fig. 3.

Fig. 3. The schematic diagram of aggregating data blocks based on Ring-
Allreduce. Green blocks contained aggregated data. Ai represents the data
block A in i-th node. P = 3.

To achieve balanced communication, we first consider im-

plementing SCAC-ADMM based on Ring-Allreduce. How-

ever, since the communication in Ring-Allreduce is performed

in one direction, it cannot flexibly transfer associated data to

different nodes. If SCAC-ADMM is implemented based on

Ring-Allreduce, each node will obtain z after each iteration.

But according to (8) and (10), only the associated part in

z is needed for updating. Transmitting whole z will incur

additional communication overhead. To avoid this additional

transmission, we design a new Allreduce model based on

Ring-Allreduce.

1) Communication design of Allreduce model: The Allre-

duce operation we proposed also consists of the Scatter-reduce

phase and the Allgather phase, each of which involves a

number of communications. And the parameters are divided

into P parts for transmission.

In the Scatter-reduce phase, parameters are transmitted in

the same direction like Ring-Allreduce. In each communica-

tion, each node receives data block from its left neighboring

node and sends data block to right neighboring node. After

P − 1 communications, each node will get a part of the final

result, and we name this part of data the complete block. At

this moment, there is one complete block and P − 1 non-

complete blocks in each node. The schematic diagram of

Scatter-reduce phase is shown in Fig. 4. In fact, the update

of z is finished after Scatter-reduce phase, and z consists of

these complete blocks distributed in each node.

Fig. 4. The schematic diagram of Scatter-reduce phase in our Allreduce
model. The communications in same color are performed simultaneously.
Green data block represents complete block. P = 3. The sequence of
communication: yellow, red.
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In the Allgather phase, we have to let each node obtain

its’ associated part in z. Therefore, each node is responsible

for managing its complete block and sending other nodes’

associated parts in this complete block to these nodes. At the

same time, each node receives its associated part in other

complete blocks. After P − 1 communications, each node

gets its own associated parameters. The schematic diagram

of Allgather phase is shown in Fig. 5. After Allgather phase,

each node will obtain the associated part in z, which is zRi
.

Since each node needs to manage its complete block,

extra communication is necessary before the first Allreduce

communication to obtain the indices of other nodes’ associated

parts in its complete block.

Fig. 5. The schematic diagram of Allgather phase in our Allreduce model.
The communications in same color are performed simultaneously. Green data
block represents complete block. P = 3. The sequence of communication:
blue, purple.

2) Support of sparse communication: Because of the select-

ing method in Section III-A, the local variable become sparse.

Therefore, we use sparse communication to further reduce the

communication traffic.

In sparse communication, two data formats are defined, the

sparse data format and the vector data format. The sparse data

format is a sequence of key-value pairs of non-zero elements in

the parameters to be transmitted. The vector data format is the

original data, represented as a vector. We use m to represent

the number of elements in parameters, nnz to represent the

number of non-zero elements, and bk and bv to represent the

number of bytes to store the value and index of parameter,

respectively. When nnz(bv + bk) < mbv , the sparse data

format is used for transmission, otherwise the vector data

format is used.

Proposed Allreduce model is based on the above two parts.

In the Scatter-reduce phase, all the local variables are sparse,

so using sparse communication can reduce the communication

traffic when aggregating them. In the Allgather phase, since

only the associated feature needs to be transmitted, commu-

nication traffic can be further reduced by using sparse data

format. Experiment in Section IV-D shows that using the

proposed Allreduce model to implement SCAC-ADMM can

greatly reduce the communication traffic compared with sparse

Ring-Allreduce.

SCAC-ADMM consists of the above procedures. And it

is summarized it in Algorithm 2. In the next section, we

demonstrate the advantages of SCAC-ADMM through several

experiments.

Algorithm 2 SCAC-ADMM

1: for all nodes [in parallel] do
2: fetch associated features according to Algorithm 1

3: Initialize x
(0)
i = 0, y

(0)
i = 0, z(0) = 0, k = 0

4: while k < max iteration do
5: k = k + 1
6: update xk+1

i according to (8)

7: wk+1
ij = xk+1

ij +
yk
ij

ρ

8: Aggregate wk+1
ij using proposed Allreduce model

9: update zk+1 according to (11)

10: update yk+1
i according to (10)

11: end while
12: end for

IV. EXPERIMENT

In this section, we test the convergence, system time,

communication traffic of SCAC-ADMM. SCAC-ADMM is

compared with the GC-ADMM introduced in Section II-A,

which is implemented based on the Ring-Allreduce and with

the AD-ADMM [12]. These algorithms are implemented in

C++ and the communication is implemented based on MPICH.

The experiments are carried out on the Tianhe-2 super-

computer platform. At most 8 physical nodes are used in the

following experiments. Each physical node runs 16 processes,

and each process represents a worker. In order to test the abil-

ity of SCAC-ADMM for processing high-dimensional data,

experiments are conducted on three public high-dimensional

datasets, kddb1, url2 and avazu3, respectively. And the training

data is partitioned by data parallelism. The specific information

of the datasets is shown in Table I.

TABLE I
SUMMARY OF DATSETS

Dataset Number of
training samples

Number of
testing samples

Number of
features

kddb 19,264,097 748,401 1,163,024
url 2,000,000 396,130 3,231,961

avazu 12,642,186 1,719,304 1,000,000

A. Parameters setting of experiments

In the experiments, we solve the logistic regression problem

as follow

min
x

P∑
i=1

log
(
1 + exp

(−biD
T
i x

))
+ λ‖x‖1. (12)

where x ∈ Rd is model parameter, Di is training samples,

bi ∈ {−1, 1} is the label of sample, λ is regularization pa-

rameter. L-BFGS [5] algorithm is used to solve sub-problems.

The regularization parameter λ is set to 0.5, and the penalty

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#kdd2010
raw version (bridge to algebra).

2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#url
3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#avazu
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(a) kddb (b) url (c) avazu

Fig. 6. Accuracy of SCAC-ADMM with different filter thresholds.

(a) kddb (b) url (c) avazu

Fig. 7. Convergence of SCAC-ADMM on kddb, url and avazu datasets.

parameter ρ is set to 1. Min barrier and max delay are two

important hyperparameters in AD-ADMM. In AD-ADMM,

the master worker will not start the next iteration until it

receives min barrier local variables. And the difference

between the number of iteration of the fastest node and the

slowest node at cannot exceed max delay. In the following

experiments, min barrier is set to the half of the workers

used in AD-ADMM, and max delay is set to 5.

The filter threshold τ is a crucial parameter which affect the

accuracy and total running time of the algorithm. The larger

the filter threshold is, the more features will be ignored when

optimizing model, and this may finally result in a large loss

of accuracy. In order to evaluate how filter threshold affect

accuracy, we test the filter threshold vs. accuracy of SCAC-

ADMM with different filter thresholds. The result is shown in

Fig. 6.

From Fig. 6, it can be found that as the filter threshold

increases, the accuracy of the algorithm decreases gradually,

which is consistent with the previous analysis. Besides, it

can be found that the more workers used in SCAC-ADMM,

the lower the accuracy is when the filter threshold keeps

constant. The reason is that in this case, more features will

be filtered according to the selecting method of associated

feature. Therefore, in order not to cause too much impact on

the accuracy, the filter threshold is set to 2, 2, 4 when testing

SCAC-ADMM with kddb, url and avazu dataset, respectively.

B. Convergence Test

The system time vs. objective value is used to measure the

convergence speed of SCAC-ADMM. The max iteration is

set to 100. When testing with the kddb and avazu dataset,

experiments are run on 16 and 32 workers, respectively. When

testing with the url dataset, experiments are run on 32 and 64

workers, respectively. To test the impact of filter threshold on

convergence, we compare the convergence curves when τ is

0 and the set value. Fig. 7 shows the convergence curves of

SCAC-ADMM on three datasets.

Result of experiment shows that with different parameter

settings, the convergence curves tend to be flat, and the

algorithm gradually converges. When testing the algorithm

with the set filter threshold, the curve almost converge to the

same value comparing with the curves when τ = 0, and the

system time of SCAC-ADMM is less. The reason is that a

larger filter threshold means smaller sub-model in each node,

the optimization will take less time. In addition, comparing

the convergence curves on three datasets, it can be found

that the convergence acceleration on the higher-dimensional

dataset url is more obvious. The experiment shows that SCAC-

ADMM has good convergence speed and it can be accelerated

by setting appropriate parameters.

C. Performance Test

In this section, we test the system time and accuracy

of SCAC-ADMM, GC-ADMM and AD-ADMM by running

them to 100 iterations. The system time consists of two

parts: the calculation time (tcal) and the communication time

(tcomm). The calculation time is defined as the optimization

time of xi and yi, and the communication time includes the

synchronization waiting time and the time of transmitting pa-

rameters. Considering the differences between the computation

time and communication time of each worker, we record the
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(a) kddb (b) url (c) avazu

Fig. 8. Performance comparisons among SCAC-ADMM, GC-ADMM and AD-ADMM.

(a) kddb; P=64 (b) url; P=64 (c) avazu; P=64

Fig. 9. Average communication traffic of aggregating a data block in sparse Ring-Allreduce and proposed Allreduce. The Scatter-reduce phase is from 1 to
P − 1 and Allgather phase is from P to 2(P − 1).

average value of them. The system time and accuracy of three

algorithms are shown in Fig. 8.

When compared with GC-ADMM, it can be found that

the computation time and communication time of SCAC-

ADMM are shorter. In terms of computation time, SCAC-

ADMM adopts a sparse calculation method to optimize only

the associated features in the local variable, while GC-

ADMM optimizes the entire local variable. Therefore, when

the number of iterations is same, SCAC-ADMM takes less

computation time. In terms of communication time, on the

one hand, the reduction of the computation time of SCAC-

ADMM leads to a reduction of the synchronization waiting

time between workers. On the other hand, SCAC-ADMM

is implemented based on Allreduce model we proposed, in

which only associated features are transmitted, so the data

transmission time is also reduced. However, due to the filtering

of some features, the accuracy of SCAC-ADMM decreases

slightly compared with GC-ADMM and AD-ADMM.

In Fig. 8, as the number of workers in the system increases,

the system time of SCAC-ADMM and GC-ADMM both

decreases, but SCAC-ADMM has a greater reduction. The

reason is that in SCAC-ADMM, the selection of associated

features is based on the number of non-zero elements in

training data, when the number of workers increases, the

amount of training data in each worker decreases, so fewer

features will be selected to compose the sub-model. Therefore,

the system time of SCAC-ADMM will decrease due to both

less training data and smaller sub-model in each worker, while

the system time of the GC-ADMM will decrease only due to

less training data in each worker.

Comparing AD-ADMM with GC-ADMM, it can be found

that AD-ADMM can also reduce the communication time,

since the asynchronous communication is used. However, the

computational time in AD-ADMM is still high. But SCAC-

ADMM can reduce the communication time and computa-

tional time simultaneously, which means SCAC-ADMM can

better process high-dimensional data.

Fig. 8 indicates that, under a loss of accuracy within 0.1%,

the system time of SCAC-ADMM is reduced by 59% (128

workers) on kddb, by 73% (64 workers) on url and by

54% (128 workers) on avazu compared with GC-ADMM. By

setting appropriate parameters, SCAC-ADMM can achieve a

large reduction in system time with a slight loss of accuracy

compared with GC-ADMM.

D. Communication Traffic of SCAC-ADMM

To demonstrate the advantages of the Allreduce model we

proposed, we implement SCAC-ADMM based on the sparse

Ring-Allreduce, and compare the communication traffic of

SCAC-ADMM under these two communication models. Since

both communication models transmit data blocks, we track the

aggregation process of each data block, and record the traffic

of each communication in Scatter-reduce phase and Allgather

phase. We run SCAC-ADMM to 100 iterations and count the
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average communication traffic. The experiments were carried

out with 64 workers. And the result is shown in Fig. 9.

In the Scatter-reduce phase, since the number of non-zero

elements increases when aggregating data blocks and the use

of sparse communication, it can be found from Fig. 9 that the

traffic increases gradually. Besides, because the communica-

tion of both Allreduce models is performed in the same way

in this phase, their traffic is the same.

In the Allgather phase, Fig. 9 shows that the traffic in

sparse Ring-Allreduce remains constant, while the traffic in the

proposed Allreduce model is reduced greatly. This is because

in sparse Ring-Allreduce, each communication in Allgather

phase transmits the same complete block, while only the

associated features in data block are transmitted through sparse

communication in the proposed Allreduce model. Experiment

shows that compared with sparse Ring-Allreduce, our Allre-

duce model has less communication traffic.

We further analyse the communication traffic of SCAC-

ADMM. d is used to denote the dimension of local variable

and P is used to denote the number of workers in SCAC-

ADMM. In a Ring-Allreduce operation, the number of com-

munications is 2×(P−1). If all the parameters are transmitted,

the traffic of an Allreduce operation can be represented as

2×(P−1)×d/P . However, in proposed Allreduce model, only

associated parameters are transmitted, so the average amount

of parameters actually transmitted is less than d, which means

there is less communication traffic in it than in Ring Allreduce.

V. CONCLUSION

In order to improve the efficiency of distributed ADMM

for processing high-dimensional data, based on general form

consensus optimization, we propose a distributed ADMM

based on sparse computation and Allreduce communication

(SCAC-ADMM). SCAC-ADMM improves the efficiency of

processing high-dimensional data through two approaches: (1)

A selecting method of associated features based on the number

of non-zero elements in each dimension of dataset is designed,

which can limit the dimension of sub-models by setting

appropriate filter threshold, so as to limit the computation cost.

(2) Based on the characteristic that only associated features

are optimized in general form consensus optimization, a novel

Allreduce model is proposed to reduce communication traffic

by aggregating these associated parameters instead of all the

model parameters. Experiments show that SCAC-ADMM has

less computational and communication cost when processing

high-dimensional data than traditional distributed ADMM.

However, due to ignoring some data features, the accuracy

of SCAC-ADMM is slightly affected. In future work, we will

focus on the how to choose a better filter threshold and the

trade-off between accuracy and system time.
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